ParaSail 8.0 Reference Manual

S. Tucker Taft

February 8, 2019

Contents

1 Introduction

1.1 Language Design Principles e
2 Lexical Elements
2.1 Character Set e
2.2 Delimiters e
2.3 Identifiers e e
2.4 Literals
2.4.1 Imteger literals
2.4.2 Real Literals e
2.4.3 Character Literals e
2.4.4 String Literals
2.4.5 Enumeration Literals e
2.5 Comments e
2.6 Reserved Words
3 Types and Objects
3.1 Types . . o
3.2 Objects o e
3.3 Object References o e
3.4 Declarations and Identifiers

4 Names and Expressions

4.1 Names oo e e
4.1.1 Component Selection L e
4.2 EXPressions v v vt e e e e e e e e e e e
4.2.1 Unary and Binary Operators e
4.2.2 Membership and Null Tests
4.2.3 Other ParaSail Operators
4.2.4 Aggregates e e e
4.2.5 Quantified Expressions e
4.2.6 Conditional Expressions
4.2.7 Map-Reduce Expressions
4.2.8 Type Conversion oo e e
5 Statements
5.1 Statement Separators
5.2 Assignment Statements L. L
5.3 If Statements
5.4 Case Statements e

w W

0 000000 ~~JO S ottt ot

13
13
13
14
14
16
16
16
17
18
19
19

5.5 Block Statements L

5.6 Loop Statements
5.6.1 Continue Statements Lo
5.7 Exit statements oL
Operations
6.1 Operation Declarations e
6.2 Operation Definitions L
6.3 Operation Calls o e
6.4 Operation Types e e e
6.4.1 Lambda Expressions e
6.5 Return Statements L
Modules
7.1 Interface Declaration for a Module
7.2 Module Inheritance and Extension Lo
7.2.1 Polymorphic Types. e
7.3 Class Definition for a Module e
7.4 Module Instantiation L e
Containers
8.1 Object Indexing and Slicing L
8.2 Container Aggregates e e
8.3 Container Element Iterator e
8.4 Container Specifiers e

9 Annotations

10 Concurrent Objects

10.1 Concurrent Modules
10.1.1 Locked and Queued Operations
10.2 Concurrent Evaluation e e e

11 ParaSail Source Files and Standard Library

11.1 ParaSail Source Files e
11.2 ITmport Clause o e e e
11.3 ParaSail Syntax Shorthands L L
11.4 ParaSail Standard Library

12 Appendix: Using the ParaSail Interpreter and Virtual Machine

12.1 ParaSail Interactive Debugger L o
12.2 ParaSail LLVM-based Compiler
12.3 Example of using ParaSail Interpreter

30
30
32
33
34
35
35

36
36
37
39
39
41

43
44
45
47
47

48

51
ol
52
93

Chapter 1

Introduction

ParaSail stands for “Parallel Specification and Implementation Language,” and is designed with the principle
that if you want programmers to write parallel algorithms, you have to immerse them in parallelism, and
force them to work harder to make things sequential. In ParaSail, parallelism is everywhere, and threads
are treated as resources like virtual memory — a given computation can use 100s of threads in the same way
it might use 100s of pages of virtual memory. ParaSail supports both lock-based and lock-free concurrent
objects.

ParaSail also supports annotations, and in fact requires them in some cases if they are needed to prove
that a given operation is safe. In particular, all checks that might normally be thought of as run-time
checks (if checked by the language at all) are compile-time checks in ParaSail. This includes uninitialized
variables, array index out of bounds, null pointers, race conditions, numeric overflow, etc. If an operation
would overflow or go outside of an array given certain inputs, then a precondition is required to prevent such
inputs from being passed to the operation. ParaSail is designed to support a formal approach to software
design, with a relatively static model to simplify proving properties about the software, but with an explicit
ability to specify run-time polymorphism where it is needed.

ParaSail has only four basic concepts — Modules, Types, Objects, and Operations. Every type is an
instantiation of a module. An object is an instance of some type. An operation operates on objects.

There are no global variables. Any object to be updated by an operation must be an explicit input or
output to the operation.

ParaSail has user-defined indexing (analogous to arrays or tables), user-defined literals (integers, reals,
strings, characters, and enumerations), user-defined “aggregates,” etc. Every type is the instantiation of some
module, including those that might be considered the built-in types, and there are no “special” operators or
constructs that only a built-in type can utilize.

ParaSail has no pointers, though it has references, optional and expandable objects, and user-defined
indexing, which together provide a rich set of functionally equivalent capabilities without any hidden aliasing
nor any hidden race conditions.

1.1 Language Design Principles

Below are some of the fundamental language design principles we tried to follow while designing ParaSail.
Of course, at times we faced a conflict, so at those times tradeoffs had to be made. Although these are
expressed as goals, by and large we believe they have been accomplished in the current design.

e The language should be easy to read, and look familiar to a broad swath of existing programmers,
from the ranks of programmers in the Algol/Pascal/Ada/Eiffel family, to the programmers in the
C/CH+/Java/C# family, to the programmers in the ML/Haskell and Lisp/Scheme communities.
Readability is to be emphasized over terseness, and where symbols are used, they should be familiar
from existing languages, mathematics, or logic. Although extended character sets are more available

these days, most keyboards are still largely limited to the ASCII, or at best, the Latin-1, character set,
so the language should not depend on the use of characters that are a chore to type.

Programs are often scanned backward, so ending indicators should be as informative as starting in-
dicators for composite constructs. For example, “end loop” or “end class Stack” rather than simply
Hend” or wl”»

e Parallelism should be built into the language to the extent that it is more natural to write parallel code
than to write explicitly sequential code, and that the resulting programs can easily take advantage of
as many cores as are available on the host computer.

e The language should have one primary way to do something rather than two or three nearly equivalent
ones. Nonessential features should be eliminated, especially those that are error prone or complicate
the testing or proof process. User-defined types and language-defined types should use the same syntax
and have the same capabilities.

e All code should be parameterized to some extent, since it is arguable that all code would benefit from
being parameterized over the precision of the numeric types, the character code of the strings involved,
or the element types of the data structures being defined. In other words, all modules should be generic
templates or equivalent. But the semantics should be defined so that the parameterized modules can
be fully compiled prior to being instantiated.

e The language should be inherently safe, in that the compiler should detect all potential race conditions,
as well as all potential runtime errors such as the use of uninitialized data, out of bounds indices,
overflowing numeric calculations, etc. Given the advances in static analysis, there is no reason that
the compiler cannot eliminate all possible sources of run-time errors.

Programming is about human programmers clearly and correctly communicating with at least two audi-
ences: 1) other human programmers, both current and future, and 2) a very literally-minded machine-based
compiler or interpreter. What is needed is human engineering, which is the process of adapting a technology
to be most useful to humans, by minimizing opportunities for errors, taking advantage of commonly under-
stood principles, using terminology and symbols consistently and in ways that are familiar, and eliminating
unnecessary complexity.

Here are some additional somewhat lower level principles followed during the ParaSail design:

e Full generality should be balanced against testability and provability. In particular, though passing
functions and types as parameters is clearly useful, it is arguable whether full upward closures and
types as true first-class objects (such as the class objects in Smalltalk), are useful enough to justify the
significant testing and proof burdens associated with such constructs. The more disciplined packaging
of type and function provided by statically-typed object-oriented programming can match essentially
all of the capability provided by upward closures and types as first-class objects, while providing,
through behavioral subtyping and other similar principles, a more tractable testing and proof problem.

e Avoid constructs that require fine-grained asynchronous garbage collection if possible. Garbage collec-
tors are notoriously hard to test and prove formally, and are made even more complex when real-time
and multi-processor requirements are added. Mark/release strategies, and more generally region-based
storage management, as in the Cyclone language, suggest possible alternative approaches.

e Mutual exclusion and waiting for a condition to be true should be automatic as part of calling an
operation for which it is relevant. This is as opposed to explicit lock/unlock, or explicit wait/signal.
Automatic locking and/or waiting simplifies programming and eliminates numerous sources for errors
in parallel programs with inter-thread synchronization. The result is also easier to understand and to
prove correct.

Chapter 2

Lexical Elements

2.1 Character Set

ParaSail programs are written using graphic characters from the ISO-10646 (Unicode) character set, as well
as horizontal tab, form feed, carriage return, and line feed. A line feed terminates the line.

digit ::=0 | 11213141516 718129
binary_digit ::= 0 | 1

hex_digit ::= digit | A..F | a..f
extended_digit ::= digit | A..Z | a..z

2.2 Delimiters
The following single graphic characters are delimeters in ParaSail:
(YL [>1,; .1 <>+=-x%x/"7
The following combinations of graphic characters are delimeters in ParaSail:

|| == 1= =7 <= >=

==> -> *xx => [[]] << >
1= K== <=> <= += —= %= [= xx= <<= >>= |=
R S S SR
The following combinations of graphic characters have special significance in ParaSail:

and= or= xor=

2.3 Identifiers

Identifiers start with a letter, and continue with letters, digits, and underscores.

identifier ::= letter { _ | letter | digit }

Upper and lower case is significant in identifiers. Letters include any graphic character in the ISO-10646
character set that is considered a letter. An identifier must not be the same as a ParaSail reserved word (see
2.6).

Examples:

X, A__B, al23, A123, This_Is_An_Identifier, Xyz_

2.4 Literals

There are five kinds of literals in ParaSail: integer, real, character, string, and enumeration.

literal ::=
integer_literal
real_literal
character_literal
string_literal
enumeration_literal

2.4.1 Integer literals

Integer literals are by default decimal. Integers may also be written in binary, hexadecimal, or with an
explicit base in the range 2 to 36.
Integer literals are of type Univ_Integer.

integer_literal ::=
decimal_integer_literal
| binary_integer_literal
| hex_integer_literal
| based_integer_literal
decimal_integer_literal ::= decimal_numeral
binary_integer_literal ::= 0 (b|B) binary_digit { [_] binary_digit}

hex_integer_literal ::= 0 (x|X) hex_numeral

based_integer_literal ::= decimal_numeral # extended_numeral #

decimal_numeral ::= digit { [_] digit }
hex_numeral ::= hex_digit { [_] hex_digit}

extended_numeral ::= extended_digit { [_] extended_digit }
Examples:

42, 1_000_000, OxDEAD_BEEF, 8#0177#

2.4.2 Real Literals

Real literals are by default decimal, with an optional decimal exponent indicating the power of 10 by which
the value is to be multiplied. Reals may also be written with an explicit base in the range 2 to 36, with a
decimal exponent indicating the power of the base by which the value is to be multiplied.

Real literals are of type Univ_Real.

real_literal ::= decimal_real_literal | based_real_literal
decimal_real_literal ::= decimal_numeral . decimal_numeral [exponent]
based_real_literal ::=

decimal_numeral # extended_numeral . extended_numeral # [exponent]

exponent ::= (e|E) [+|-] decimal_numeral

Examples:

3.14159, 0.15, 16#F.FFFF_FFFF_FFFF#e+16

2.4.3 Character Literals

Character literals are expressed as a pair of apostrophes bracketing a single unescaped_character, being

any graphical character of the ISO-10646 character set other than apostrophe and backslash, or a single

escaped_character, being a backslash followed by an escapable_character or a hexadecimal character code.
Character literals are of type Univ_Character.

character_literal ::= ’ unescaped_character ’ | ’ escaped_character °’

escaped_character ::= \ escapable_character | \ # hex_numeral #
escapable_character ::=\ | > | " | “|Inlr |t]| £f]O0
The following escapable characters have the following interpretation when preceded by \:

\ -- backslash

> -- apostrophe

" -- double quote

-- back quote (accent grave)

n -- line feed

r -- carriage return
t -- horizontal tab
f -- form feed

0 -- Nul

A character literal of the form ’\#hex_numeral#’ specifies the character whose ISO-10646 code is equal to
the value of the given hex numeral.
Examples:

’a’, 207, ’\’’, ’\r’, ’\#03_Co#’

2.4.4 String Literals

String literals are a sequence of graphical characters of the ISO-10646 character set enclosed in double quotes.
The backslash and double-quote characters may appear only as part of an escaped_character. The back-quote
(accent grave) character has special significance (unless it is escaped) and is used to introduce an arbitrary
parenthesized expression in the middle of a string, a process often termed string interpolation. A string
containing such a back-quoted construct is syntactic sugar for a concatenation of three items (using the "|"
operator): a string literal composed of the characters preceding the construct, the parenthesized expression,
and a string literal composed of the characters following the construct.
String literals are of type Univ_String.

string_literal ::= " { unescaped_character | escaped_character | backquoted_expression} "
backquoted_expression ::= ‘(expression)
Examples:

"This is a multiline message\n and this is the second line."

"The value of X + Y is ‘(X + Y)."

is syntactic sugar for:

"The value of X + Yis " | X +Y) | "."

2.4.5 Enumeration Literals

Enumeration literals are expressed with a # followed by an identifier or reserved word.
Enumeration literals are of type Univ_Enumeration.

enumeration_literal ::= # (identifier | reserved_word)
Examples:

#red, #true, #Monday

2.5 Comments

Comments in ParaSail start with // and continue to the end of the line.
Examples:

// According to the Algol 68 report,
// comments are for the enlightenment of the human reader.

2.6 Reserved Words

The following words are reserved in ParaSail:

abs block const elsif
abstract case continue end

all class each exit
and concurrent else extends

exports
for
forward
func
global

if
implements
import

in
interface

All reserved words in ParaSail are in lower case.

is
lambda
locked
loop
mod
new
not
null
of

op

optional
or
private
queued
ref

rem
return
reverse
separate
some

then
type
until
var
while
with
x0T

Chapter 3

Types and Objects

In ParaSail, every object is an instance of some type, and every (data) type is defined by instantiating a
module and/or applying a value constraint on an existing (data) type. There are also operation types which
are defined by their input and output types (see 6.4).

3.1 Types

A (data) type is declared by instantiating the interface of a module (see 7.1), or by constraining an existing
(data) type, using the following syntax:

type_declaration ::=
’type’ identifier ’is’ [’new’] type_specifier [value_constraint] ’;’

type_specifier ::= type_name | module_name ’<’ module_actuals ’>’

value_constraint ::= annotation

See Chapter 9 for the syntax of an annotation.

The presence of 'new’ in a type_declaration indicates that the type is not equivalent to any other type.
If no 'new’ is specified, then the type is value-equivalent to any other instantiation of the same module with
value-equivalent actuals. The type is constraint-equivalent to any other instantiation of the same module with
constraint-equivalent actuals, and with the same value_constraint annotation, if any. A value_constraint does
not create a new type per se, but instead represents a constrained subtype of a type, with the constraint(s)
determining which values belong to the subtype. In other words, name equivalence is used between two
types if either was declared with the reserved word 'new.” Otherwise structural equivalence applies, where
the basic structure is determined by the actuals supplied to the module instantiation, and the subset of
values of the type is determined by the value_constraint annotations, if any.

Two types are considered significantly different if they result from instantiating different modules, or if
they result from distinct instantiations of the same module at least one of which included the 'new’ reserved
word.

Example:

Given the interface of a List module defined as follows (see 7.1):

interface List <Element_Type is Assignable<>> is
func Create() —> List;
func Is_Empty (L : List) —> Boolean;
func Append(var L : List; Elem : Element_Type);
func Remove_First(var L : List) —> optional Element_-Type;
func Nth_Element(ref L : List; N : Univ_Integer)

10

—> ref optional Element;
end interface List;

A specific kind of list may be declared as follows:
type Bool_List is List < Boolean >;

This declares a Bool_List type which represents a list of Booleans.

3.2 Objects

Objects contain data, and may either be variables (declared with 'var’), allowing their data to be changed
after initialization, or constants (declared with ’const’), meaning the initial value of the data of the object
cannot be changed during the life of the object.

An object is declared using the following syntax:

object_declaration ::=
uninitialized_object_declaration
| initialized_object_declaration

uninitialized_object_declaration ::=
var_or_const identifier ’:’ object_type [container_specifier] ’;’

initialized_object_declaration ::=
var_or_const identifier [’:’ object_type] [container_specifier] ’:=’ expression ’;’
| var_or_const identifier [’:’ object_type] ’<==’ object_name ’;’

var_or_const ::= ’var’ | ’const’
object_type ::= object_qualifier type_specifier [value_constraint]
object_qualifier ::= [’optional’] [’concurrent’]

See section 8.4 for syntax of container_specifier.

The value of an object may be null only if it is declared to have an ’optional’ type. An uninitialized
object with an ’optional’ type has the null value initially.

An uninitialized object that has a non-optional type must be assigned a value prior to being referenced.
An uninitialized constant object may be assigned a value at most once, and if it has an optional type, must
not be assigned a value after its (null) value is referenced.

When an object is initialized using the ><==’ mowve operation (as opposed to the ":=’ assign operation —see
5.2 Assignment Statements), the initial value comes from an existing object (identified by an object_name).
This value is moved into the new object, and the existing object is set to the null value as a side-effect.
The object_name must denote a variable with an ’optional’ type.

Examples:

var BL : Bool_List := Create();
const T : Boolean := #true;
var Result : optional T;

var Next <== Tree. Left;

These declare a variable boolean list, a constant with Boolean value #true, a variable Result with implicit
initial value of null, and a variable Next initialized by moving the value from Tree.Left, leaving Tree.Left
null.

11

3.3 Object References

A reference to an existing object is declared using the following syntax:

object_reference_declaration ::=
’ref’ [var_or_const] identifier [’:’ type_specifier] ’=>’ object_name ’;’

A variable reference is only permitted to a variable object. A constant reference provides read-only access to
an object, whether or not the object itself is a constant. A reference not specified as 'var’ or ’const’ allows
the same access as that provided by the object to which it refers.

Examples:

ref const Left => L.Left_Subtree;
ref var X = M[I];
ref Max => First_Element (A);

These create a read-only reference to the Left_Subtree component of L, a read-write reference to the Ith
element of M (which must be a variable), and a reference to the first element of A, which is a read-write
reference only if A is a variable. Note that in the third example, it is assumed that the First_Element function
takes a "ref” input and returns a "ref” output (see 6.1);

3.4 Declarations and Identifiers

The identifier introduced by the declaration of a type or object must not denote a currently visible declaration.
However, when declaring a module formal, an operation input, or an operation output, the identifier may be
omitted, in which case it is taken, in the case of a type formal, from the module name, in the case of an input
to an operation, from the type name, and in the case of an operation output, from the operation name. In
addition, when inside a module, the module’s simple name also identifies a type which is the current instance
of the module.

The identifier introduced by the declaration of an operation must not denote a currently visible interface,
type, or object, but may be the same as that of an existing operation, provided it differs significantly in the
types of one or more inputs or outputs (see 3.1 for definition of significantly different types).

The full name of a module must be unique within a given program.

12

Chapter 4

Names and Expressions

4.1 Names

Names denote modules, types, objects, and operations.

name ::= module_name | type_name | object_name | operation_name
module_name ::= [module_name ’::’] identifier

type_name ::= type_identifier [’+’]

type_identifier ::= [type_identifier ’::’] identifier

object_name ::=
identifier
| object_indexing_or_slicing
| operation_call
| component_selection

See Operation Calls (Section 6.3) for the syntax of operation_name and operation_call. See Object Indexing
and Slicing (Section 8.1) for the syntax of object_indexing_or_slicing.

4.1.1 Component Selection

If an object_declaration occurs immediately within the interface (see 7.1) or class (see 7.3) for a module,
and the declaration is not for an initialized ’const’ object, then it declares a component object. Components
declared within a module comprise the data of each object of a type based on the module.

Components are named by naming the enclosing object, then a ’.”; and then the identifier of the compo-
nent:

component_selection ::= object_name ’.’ identifier

Examples:

C.Real_Part, Point.X, List_Node.Next, T.Right_Subtree

13

4.2 Expressions

expression ::=
[type_identifier ’::’] literal
| ’null’
| object_name
| postcondition_value
| initial_value_specification
| unary_operator expression
| expression binary_operator expression
| membership_test
| null_test
| quantified_expression
| type_conversion
| lambda_expression
| [type_identifier ’::’] bracketed_expression
bracketed_expression ::=
aggregate

| conditional_expression

| map_reduce_expression

| universal_conversion

| >(’ expression ’)’

Literals evaluate to a value of a corresponding universal type, and are implicitly convertible to a type that
has a corresponding "from_univ" operator, so long as the value satisfies the precondition of the operator.

The reserved word null’ evaluates to the null value, which can be used to initialize any object declared
to have an ’optional’ type.

A type_identifier followed by ’::’ may be used to specify explicitly the result type of (the implicit
conversion of) a literal, or of a bracketed_expression — one of the forms of expression that is enclosed
in () or [], where the type might not be resolvable without additional context.

See Annotations (Chapter 9) for the syntax of postcondition_value and universal_conversion. See 4.2.7
for the syntax of initial_value_specification.

Examples:

Y := ?This.is_ac_string._literal”; // Y must be of a type with a "from_univ” operator
// from Univ_String

return null; // function must have a return type of the form ”optional T”

// indicating it might return “null” rather than a value of type T
Display (Output, Complex::(Real => 1.0, Imaginary => 1.0));
// Ezxplicitly specify the result type of an aggregate

4.2.1 Unary and Binary Operators

The following are the unary operators in ParaSail:
|l+|| , n_n , Ilabsll s llnotll
The following are the binary operators in ParaSail:

Mook ! -- Exponentiation

14

kM ,oM/M 0 Mrem", "mod" —-- Multiply, Divide, Remainder, and Modulo operators

M onn —— Addition and subtraction
oL, L, -- Interval operators; closed, open-closed,
A GRS -- closed-open, open-open

v -- Used to combine elements into a container

=) ==t -- The usual relational operators

Il!=ll, Il>=ll, |I>ll

=7 —-- The "compare" operator; all relational
—-- operators are defined in terms of "=7"

g, NS> -- left shift and right shift
"and", "or", "xor" -- The basic boolean operators
"and then", "or else" —-- Short-circuit boolean operators
N==>" -- "implication" operator

The highest precedence operators are the unary operators and the exponentiation (”**”) operator. The
next lower precedence operators are the multiplication, division, and remainder operators. The next lower
precedence operators are the addition and subtraction operators. Next are the interval operators. Next
the combine operator ("|"). Next the relational, compare, and shift operators. Lowest are the boolean
operators.

Addition, subtraction, multiplication, and division are left-associative. Exponentiation is right-associative.
For other operators, parentheses are required to indicate associativity among operators at the same level
of precedence, except that for the boolean operators, a string of uses of the same operator do not require
parentheses, and are treated as left-associative.

The binary compare operator ("=7") returns an Ordering value indicating the relation between the two
inputs, being #less, #equal, #greater, or #unordered. The value #unordered is used for types with only
a partial ordering. For example, the ”=7" operator for sets would typically return #equal if the sets have
the same members, #less if the left operand is a proper subset of the right, #greater if the left operand is
a proper superset of the right, and #unordered otherwise. All of the other relational operators are defined
in terms of ”=7" — only ”=7?" is user-definable for a given type.

The evaluation of an expression using a unary or binary operator is in general equivalent to a call on
the corresponding operation, meaning that the operands are evaluated in parallel and then the operation
is called (see 6.3). The short-circuit boolean operators "and then" and "or else" and the implication

operator "==>" are implemented in terms of the corresponding if_expression (see 4.2.6):
A and then B // equivalent to (if A then B else #false)
A or else B // equivalent to (if A then #true else B)
A=>B // equivalent to (if A then B else #true)
Examples of unary and binary operators:
S1 =7 S2 // Compare S1 and S2,
// return #less, #equal, #greater, or #unordered
X xx 3 // X cubed
abs (X —-Y) // absolute wvalue of difference
0 ..< Length // The interval 0, 1, .. Length — 1
(A and B) or C // parentheses required
A or B or C // parentheses not required

X*xY+U=xV // parentheses not required

15

4.2.2 Membership and Null Tests

A membership test is used to determine whether a value can be converted to a type, satisfies the value-
constraints of a type, or is in a particular interval or set. A null test is used to determine whether a value is
the null value. The result of a membership test or null test is of type Boolean.

membership_test ::=
expression [’not’] ’in’ expression
| expression [’not’] ’in’ type_name

null_test ::= expression ’is’ ’null’ | expression ’not’ ’null’
Examples:
X in 3..5 // True if X>= 8 and X <=5

Y not in ™+ // True if Y is not convertible to T+
#red in Color // True if #red is convertible to Color
Z not null // True if Z does mot have a null value

4.2.3 Other ParaSail Operators

"from_univ" -- invoked implicitly to convert from a value of a universal type

"to_univ" -- invoked using "[[expression]]" to convert to a universal type
-- and used implicitly to convert to a universal type for operations
-- that take universal-type parameters

"convert" -- invoked using "type_name (expression)" to convert between types
"indexing" -- invoked by "object [operation_actuals]" to index into a container
"slicing" -- invoked by "object [operation_actuals]" to select a slice of a container
"index_set" -- invoked by an iterator to iterate over the elements of a container
" -- invoked by "[]" to create an empty container; invoked implicitly
by "[keyl => valuel, key2 => value2, ...]" followed by multiple calls
on "|=" to build up a container given the key/value pairs
“[..] -- invoked by "[..]" to create a universal set;
invoked implicitly to turn a type name into the set of its values
"O" —-- invoked by "(operation_actuals)" to create an object from components
Examples:
X = 42; // Implicit conversion from Univ_Integer wusing ”from_univ” operator
Print ([[X]]); // Convert back to Univ_Integer for printing using "to_univ” operator
C[Key] // The element of C associated with given Key wusing ”indexing” operator
AX.. <Y] // The slice of A going from X to Y—1 wusing ”slicing” operator

[] // An empty container using 7[]”7 operator

(A => 25, B => #true)
// An anonymous object with given values for its components
// wusing 7()” operator

4.2.4 Aggregates

Aggregates are used for constructing values out of their constituents. There are two kinds of aggregates: the
class_aggregate for creating an object of a type from its named components, and the container_aggregate,
for creating an object of a container type (see 8.2) from a sequence of elements, optionally associated with
one or more keys.

16

The class_aggregate is generally only available when inside the class defining a module, or for a type
based on a module that has only components declared in its interface. In addition, if the ”()” operator is
explicitly declared in the interface of a module, then the class_aggregate may be used.

Aggregates have the following form:

aggregate ::= class_aggregate | container_aggregate
class_aggregate ::= ’(’ class_components ’)’
class_components ::= class_component { ’,’ class_component }

class_component ::=
[id ’=>’] expression
| id ’<==’ object_name

See 8.2 Container Aggregates for the syntax of a container_aggregate.

In a class_aggregate, named components (class_component with an id specified) must follow any positional
components (those without an id specified). If the ><==’ move operation is specified, then the value of the
component is moved from the named existing object, leaving it null. The named existing object must be a
variable, with an ’optional’ type.

Examples:

X= 3.5, Y= 6.2) // fully mamed class_aggregate
(Element, Next => null) // mized positional and named class_aggregate

List := (Item <= Element, Next <== List);
// move Element to front of linked list

4.2.5 Quantified Expressions

Quantified expressions are used to specify a boolean condition that depends on the properties of a set of
values.
A quantified expression has the form:

quantified_expression ::=
>(? ’for’ all_or_some quantified_iterator ’=>’ condition ’)’

all_or_some ::= ’all’ | ’some’

quantified_iterator ::=
set_iterator | element_iterator | initial_next_while_iterator

See Loop Statements (section 5.6) for the syntax of the various iterator forms.

A quantified_expression with the reserved word ’all’ is true if and only if the condition evaluates to true
for all of the elements of the sequence produced by the quantified_iterator. A quantified_expression with the
reserved word 'some’ is true if and only if the condition evaluates to true for at least one of the elements
of the sequence produced by the quantified_iterator. It is not specified in what order the evaluations of the
condition are performed, nor whether they are evaluated in parallel. The condition might not be evaluated
for a given element of the sequence if the value for some other element already determines the final result.

Examples:
N_Is_Composite := (for some X in 2..N/2 => N rem X = 0);
Y_Is.-Max := (for all I in Bounds(A) => A[I] <=Y);

17

4.2.6 Conditional Expressions

Conditional expressions are used to specify a value by conditionally selecting one expression to evaluate
among several.
Conditional expressions are of one of the following forms:

conditional_expression ::= if_expression | case_expression
An if expression has one of two alternative syntaxes:

if_expression ::=
condition ’7’ expression ’:’ expression
| >(°> ’if’ condition ’then’ expression else_part_expression ’)’

else_part_expresssion ::=
{ ’elsif’ condition ’then’ expression } ’else’ expression

All expressions of an if_expression must be null or implicitly convertible to the same type.

To evaluate an if_expression, the conditions are evaluated in sequence, and the first one that evaluates
to true determines the expression to be evaluated (the one following the '?’ or corresponding ’then’). If all
of the conditions evaluate to false, the last expression of the if_statement is evaluated to produce the value
of the if_expression.

Examples:

Bigger := (if X > Y then X else Y);

return Y =— 0?7 null : X/Y; // return null if would divide by zero
Case expressions have the following form:

case_expression ::=
>(’ ’case’ case_selector ’of’
case_expression_alternative { ’;’
case_expression_alternative } [’;’
case_expression_default]

7))

case_expression_alternative ::=
>[? choice_list ’]’ ’=>’ expression
| >[’ identifier ’:’ type_name ’]’ ’=>’ expression

case_expression_default
>[..]> ’=>’ expression

See Case Statements (section 5.4) for the syntax of case_selector and choice_list.

All expressions following ’=>’ of a case_expression must be null or implicitly convertible to the same
type.

The choice list or type_name of each case_expression_alternative determines a set of values. If there is
not a case_expression_default, then the sets associated with the case_expression_alternatives must cover all
possible values of the case_selector. The sets associated with the case_expression_alternatives must be disjoint
with one another.

To evaluate a case_expression, the case_selector is evaluated. If the value of the case_selector is in a set
associated with a given case_expression_alternative, the corresponding expression is evaluated. If the value
is not a member of any set, then the expression of the case_expression_default is evaluated.

If a case_expression_alternative includes an identifier and a type_name, then within the expression, the
identifier has the given type, with its value given by a conversion of the case_selector to the given type.

Example:

18

return (case Key =7 Node.Key of
[##less] => Search(Node. Left, Key);
[#equal] => Node. Value;
[#greater] => Search(Node.Right, Key));

4.2.7 Map-Reduce Expressions

Map-reduce expressions are used to specify a value that is produced by combining a set of values, given an
initial value and an operation to be performed with each value.
A map-reduce expression has the form:

map_reduce_expression ::=
>(? ’for’ map_reduce_iterator [value_filter]
’=>’ expression_with_initial_value ’)’

map_reduce_iterator ::=
set_iterator
| ’each’ element_iterator
| initial_next_while_iterator

expression_with_initial_value ::= expression

initial_value_specification ::= ’<’ expression ’>’

See Loop Statements (section 5.6) for the syntax of the various iterator forms.

An expression_with_initial_value must have exactly one initial_value_specification within it (not in-
cluding the contents of any nested map_reduce_expressions). The expression of the initial_value_specification
must not refer to the loop variable of the iterator.

For the evaluation of amap_reduce_expression, first the expession of the initial_value_specification
is evaluated and it becomes the initial result of the map_reduce_expression. Then for each element of the
sequence of values produced by the map_reduce_iterator that satisfies the value_filter, if any, the
expression_with_initial_value is evaluated, with the initial_value_specification taking on the
value of the current result of the map_reduce_expression, and the result of the evaluation becoming the
next result of the map_reduce_expression. After all of the elements of the sequence produced by the itera-
tor have been combined, the last such evaluation determines the final result. If there are no elements in the
sequence, then the initial result is used.

Examples:

Sum_Of_Squares := (for X in 1..N = <0> + X*x%2);

Largest_In_Absolute_Value :=
(for each E of Arr => Max (<null>, abs E));

Note that the language-provided Max operations, when given a null operand, will return the other
operand. The same applies to the Min operations.

4.2.8 Type Conversion

A type conversion can be used to convert an expression from one type to another, by using a syntax like
that of an operation call but with the operation identified by the name of the target type:

type_conversion ::= type_name ’(’ expression ’)’

19

The expression of a type_conversion must be convertible to the target type. An expression of a type A is
convertible to a type B if the type A is convertible to type B and the value of the expression after conversion
satisfies any value-constraints on B.

Type A is convertible to type B if and only if:

Types A and B are instances of the same module with value-equivalent (see 3.1) actuals (even if one
of them is a 'new’ type);

Type B is a polymorphic type (see 7.2.1), and type A is an instance of a module that extends or
implements the root interface of B, with value-equivalent actuals;

Type A is a polymorphic type, and the type-id of the expression identifies a type that is convertible
to B;

Type A has a "to_univ" operator and type B has a "from_univ" operator such that the result type
of the "to_univ" operator is the input type of the "from_univ" operator;

Type A or type B has a "convert" operator that has an input type that matches type A and a result
type that matches type B.

20

Chapter 5
Statements

Statements specify an action to be performed as part of a sequence of statements. A ParaSail statement can
either be a simple statement, a compound statement containing other statements as constituents, or a local

declaration:

statement ::= simple_statement | [label] compound_statement | local_declaration

simple_statement ::=
assignment_statement
exit_statement
continue_statement
return_statement
operation_call

label ::= ’*’ statement_identifier ’x*’

statement_identifier ::= identifier

compound_statement ::=
if_statement | case_statement | loop_statement | block_statement

local_declaration ::= object_declaration | operation_declaration | operation_definition

If and only if a compound_statement is preceded by a label, then the statement_identifier must appear again

at the end of the compound_statement.
If a compound_statement completes normally, as opposed to ending via an exit_statement, continue_statement,
or return_statement, then the with_values clause, if any, at the end of the compound_statement is executed.

with_values ::=

’with’ identifier ’=>’ expression
| >with’ ’>(’ identifier ’=>’ expression { ’,’ identifier ’=>’ expression } ’)’

5.1 Statement Separators

Statements are separated with ’;?, >||’, or then’. The delimiter ’;’ may also be used as a statement

terminator.

statement_list ::=

21

statement_group { [’;’] ’then’ statement_group } ’;’
statement_group ::= statement_sequence | statement_thread_group
statement_sequence ::= statement { ’;’ statement }

statement_thread_group ::=
statement_thread [’;’]
> |’ statement_thread { [’;’]
’| |’ statement_thread }

statement_thread ::= statement { ’;’ statement }

The scope of a local_declaration occurring immediately within a statement_sequence goes from the declaration
to the end of the immediately enclosing statement_list. The scope of a local declaration occurring immediately
within a statement_thread goes from the declaration to the end of the statement_thread.

For the execution of a statement_list, each statement_group is executed to completion in sequence. For
the execution of a statement_sequence or a statement_thread, expressions are evaluated and assignments and
calls are performed in an order consistent with the order of references to sequential objects (see chapter
10) occurring in the statements. For the execution of a statement_thread_group, each statement_thread is
executed concurrently with other statement_threads of the same group.

Examples:

A :=C(B); D:= F(E) || U:=G(V); W:= H(X);
The first two statements run as one thread, the latter two run as a separate thread.

block

var A : Vector<Integer> := [X, Y];
then

Process(A[1]);

[
Process (A[2]);
end block;

The declaration of A is completed before beginning the two separate threads invoking Process on the two
elements of A.

5.2 Assignment Statements
An assignment_statement allows for replacing the value of one or more objects with new values.

assignment_statement ::=
object_name ’:=’ expression
| object_name ’<==’ object_name
| object_name ’<=>’ object_name
| class_aggregate ’:=’ expression
|

object_name operate_and_assign expression

There are builtin operations for simple assignment, for moving an object to a new location leaving a null
behind, and for swapping the content of two objects:

"=t -- simple assignment of right-hand-side into left-hand-side
"<==" -- move contents of right-hand-side to left-hand-side, leaving

22

the right hand side "null"
"<=>" -- swap left and right hand content

Multiple objects may be assigned in a single assignment by using a class_aggregate as the left hand side of
an assignment.

In addition to the built-in assignment, move, and swap operations, several of the binary operators may
be combined with ”=" to produce operate-and-assign operations:

operate_and_assign ::=
I 4=> | pa— |) k=") kk=" | 1= | I>>=)

| ’and="’ | Yor="’ | b | ;<|=;
The last operator ’<|=’ combines the right hand side into the left hand side, and then sets the right hand
side to null. This is analogous to the move (’<==’) operation defined above, except that the left hand side

is presumed to be a container into which the right hand side is combined.

Examples:

X := A + B; // Set X to sum of A and B

Tail <= List.Next; // Remove the tail of List and assign to Tail.
Y <= Z; // swap Y and Z

(Y, Z2) == (Z,Y); // another way to swap Y and Z

X 4= 1; // Add one to X

Y = 2; // Multiply Y by 2

C |= Elem; // Add Elem to the C container

C <|= Elem; // Move Elem into the C container

5.3 If Statements

If statements provide conditional execution based on the value of a boolean expression.
If statements are of the form:

if_statement ::=
’if’ condition ’then’
statement_list
[else_part]
’end if’ [statement_identifier] [with_values]

else_part ::=
’elsif’ condition ’then’
statement_list
[else_part]
| ’else’
statement_list

condition ::= expression -- must be of a boolean type

For the execution of an if statement, the condition is evaluated and if true, then the statement_list of the
if statement is executed. Otherwise, the else_part, if any, is executed.

For the execution of an else_part, if the else_part begins with ’elsif’, then the condition is evaluated and
if true, the statement_list following ’then’ is executed. Otherwise, the nested else_part, if any, is executed.
If the else_part begins with ’else’, then the statement_list following the ’else’ is executed.

Example:

23

if This-Were(A_Real_Emergency) then
You_-Would(Be_Instructed , Appropriately);

elsif This_Is(Only_A_Test) then
Not_-To-Worry ();

end if;

5.4 Case Statements

Case statements allow for the selection of one of multiple statement lists based on the value of an expression.
Case statements are of the form:

case_statement ::=
’case’ case_selector ’of’
case_alternative
{ case_alternative }
[case_default 1]
’end’ ’case’ [statement_identifier] [with_values]

case_selector ::= expression
case_alternative ::=

[’ choice_list ’]’ ’=>’ statement_list
| >[’ identifier ’:’ type_name ’]’ ’=>’ statement_list

choice_list ::= choice { ’|’ choice }
choice ::= expression [interval_operator expression]
interval_operator ::= ..’ | 2..<> | <. | <<

case_default ::=
’[..]7 ’=>’ statement_list

The choice_list or type_name of each case_alternative determines a set of values. If there is not a case_default,
then the sets associated with the case_alternatives must cover all possible values of the case_selector. The
sets associated with the case_alternatives must be disjoint with one another.

For the execution of a case_statement, the case_selector is evaluated. If the value of the case_selector is
in a set associated with a given case_alternative, the corresponding statement_list is executed. If the value
is not a member of any set, then the statement_list of the case_default is executed.

If a case_alternative includes an identifier and a type_name, then within the statement _list, the identifier
has the given type, with its value given by a conversion of the case_selector to the given type.

Example:

case Lookahead(Input) of

[’a’..’z | A2] =

Handle_Alphabetic (Input);
[’0..79’] =

Handle_Numeric (Input);
[\n’] =

Handle_End_Of_Line (Input);
[P\O7] =

Handle_End_Of_Input (Input);
[..] =

24

Handle_Others (Input);
end case;

5.5 Block Statements

A block statement allows the grouping of a set of statements with local declarations and an optional set of
assignments to perform if it completes normally.
A block statement has the following form:

block_statement ::=
’block’
statement_list
’end’ ’block’ [statement_identifier] [with_values]

For the execution of a block_statement, the statement_list is executed. If the statement_list completes without
being left due to an exit or return statement, the with_values clause at the end of the block, if any, is executed.

5.6 Loop Statements

A loop statement allows for the iteration of a statement_list over a sequence of objects or values.
Loop statements have the following form:

loop_statement ::=
while_until_loop | for_loop | indefinite_loop

while_until_loop ::= while_or_until condition loop_body

while_or_until ::= ’while’ | ’until’

For the execution of a while_until_loop the condition is evaluated. If the condition is satisified, mean-
ing it evaluates to true when ’'while’ is specified or evaluates to false when ’until’ is specified, then the
statement_list of the loop_body is executed, and if the statement_list reaches its end, the process
repeats. If the condition is not satisfied, then the current iteration completes without executing the
statement_list. If this is the last iteration active within the loop, the while_until_loop is completed,
and the with_values clause at the end of the loop_body, if any, is executed.

indefinite_loop ::= loop_body

An indefinite_loop is equivalent to a while_until_loop that begins with 'while’ and has an expression
of #true.

for_loop ::=
>for’ iterator [value_filter] [direction] loop_body
| >for’ °>(’ iterator_list ’)’ [value_filter] [direction] loop_body

value_filter ::= annotation
direction ::= ’forward’ | ’reverse’ | ’concurrent’
loop_body ::=

>loop’

statement_list

25

’end’ ’loop’ [statement_identifier] [with_values]

iterator_list ::=
iterator [direction] { ’;’ iterator [direction] }

iterator ::=
set_iterator
| ’each’ element_iterator
| value_iterator

set_iterator ::=
identifier [’:’ type_name] ’in’ expression

value_iterator ::=
initial_value_iterator
| initial_next_while_iterator

initial_value_iterator ::=
loop_variable_initializer [while_or_until condition]

initial_next_while_iterator ::=
loop_variable_initializer next_values [while_or_until condition]

loop_variable_initializer ::=
identifier [’:’ type_name] ’:=’ expression
| identifier ’=>’ object_name

next_values ::= ’then’ expression { ’||’ expression }

See 8.3 for the syntax of an element_iterator. See Chapter 9 for the syntax of an annotation.

A direction of forward’ or ‘reverse’ is permitted only when at least one of the iterators of a for_loop
is a set_iterator or an element_iterator. The direction determines the order of the sequence of values
produced by such iterators. In the absence of a ’forward’ or 'reverse’ direction, such iterators may generate
their sequence of values in any order.

The identifier of an iterator declares a loop variable which is bound to a particular object or value for
each execution of the statement_list of the loop_body.

Each kind of iterator produces a sequence of values (or objects). If a value_filter is present, the
sequence is reduced to those values (or objects) that satisfy the value_filter annotation (see Chapter 9
for examples of annotations).

The values in the sequence produced by a set_iterator are all of the values of the set, less those that do
not satisfy the value_filter, if any. The values in the sequence produced by a value_iterator are given
explicitly by the initial value (or initial object when ’=>’ is used), and the next values, either specified in an
initial_next_while_iterator itself after then, or in continue_statements within the body of the loop,
as long as the while_or_until condition is satisfied. Again, if there is a value_filter, the values that
do not satisfy the value_filter are skipped. See section 8.3 for a description of the sequence of objects, or
key-value pairs, produced by an element_iterator.

If the expression of a set_iterator is a type_name, it is equivalent to invoking the "[..]" operator
defined for that type, to produce the set of all values of the type (see section 4.2.3).

For the execution of a for_loop with a single iterator, the statement_list of the loop_body is executed
once for each element in the sequence of values produced by the iterator (along with values specified by
continue_statements that apply to the for_loop and have a with_values clause — see 5.6.1). For each

26

execution of the statement_list, the loop variable is bound to the corresponding element of the sequence
(or the value specified by the continue statement — see 5.6.1).

For the execution of a for_loop with multiple iterators, the statement_list of the loop_body is executed
once for each set of elements determined by the set of iterators (and any applicable continue_statements
having a with_values clause), with the iterator that produces the shortest sequence limiting the number of
executions of the statement_list. That is, the for_loop terminates as soon as any one of the iterators has
exhausted its sequence. If there is a value_filter, then the loop_body is skipped for any set of elements
that does not satisfy the filter.

After a for_loop terminates normally, that is, without being exited by an exit or return statement, the
with_values clause, if any, is executed.

Examples:

for I in 1..10 concurrent loop
X[I] := T %% 2;
end loop;

The above loop initializes a table of squares in parallel.

for each S of List_Of_Students(Classroom) {Is-Undergraduate(S)} forward loop
Print (Report, Name(S));
end loop;

The above loop prints the names of the undergraduate students (i.e. those satisfying the Is_Undergraduate
filter) in the order returned by the List_Of_Students function for the given Classroom.

for X => Root then X.Left || X.Right while X not null loop
Process (X.Data);
end loop;

The above loop calls Process on the Data component of the Root, and then initiates two new iterations
concurrently, one on the Left subtree of X and one on the Right subtree. An iteration is not performed for
cases where X is null. The loop as a whole terminates when Process has been called on the Data component
of each element of the binary tree.

5.6.1 Continue Statements

A continue statement may appear within a loop, and causes a new iteration of the loop to begin, optionally
with new binding(s) for the loop variable(s).
A continue statement has the following form:

continue_statement ::= ’continue’ ’loop’ [statement_identifier] [with_values]

For the execution of a continue_statement, the current thread completes the current iteration of the imme-

diately enclosing loop, and begins a new iteration of the specified loop (or in the absence of a statement_identifier,

the immediately enclosing loop). If the identified loop is a for_loop without a specified sequence or next

value, then there must be a with_values clause, which determines the new binding(s) for the loop variable(s).
Example:

for X = Root while X not null loop
Process (X.Data);
|| continue loop with X = X. Left;
|| continue loop with X => X.Right;
end loop;

The above loop walks a binary tree in parallel, with the continue statements used to initiate additional
iterations of the loop body to process the Left and Right subtrees of X. This is equivalent to the example
given in 5.5, except that the subtrees of X are walked concurrently with calling Process on X.Data. (The

27

example given in 5.5 could be made exactly equivalent by making that loop into a concurrent loop, which
means that while performing the statement_list of one iteration we proceed onto the next values.)

Note that the loop_statement whose iteration is terminated by a continue_statement may be nested
within the loop_statement identified by the statement_identifier, and this outer loop_statement is the
one that begins a new iteration.

Example:
var Solutions : Concurrent_Vector<Solution> := [];
xOuter_Loopx
for (C : Column := 1; Trial : Solution := Empty()) loop

for R in Row concurrent loop // Iterate over the rows
if Acceptable(Trial, R, C) then
// Found a Row/Column location that is acceptable
if C < N then
// Keep going since haven’t reached Nth column.
continue loop Outer_Loop with (C = C+1,
Trial => Incorporate(Trial, R, C));

else
// All done, remember trial result that works
Solutions |= Incorporate(Trial, R, C);
end if;
end if;
end loop;

end loop Outer_Loop;

If an inner loop_statement has multiple iterations active concurrently, a continue_statement terminates
only one of them. The other active iterations proceed independently. The inner loop_statement as a
whole only completes when all of the active iterations within the loop are complete. If all of the itera-
tions of the inner loop_statement end with a continue_statement to an outer loop_statement, then the
thread that initiated the inner loop_statement is terminated. If at least one of the iterations of the inner
loop_statement completes normally, then the thread that initiated the inner loop_statement executes the
with_values clause, if any, and proceeds with the statements following the inner loop_statement.

In this example, the above doubly nested loop iterates over the columns of a chessboard, and for each
column iterates in parallel over the rows of the chessboard, trying to find a place to add a piece that satisfies
the Acceptable function. When a place is found at a given row on the current column, the continue statement
proceeds to the next column with the given Trial solution. Meanwhile, other rows are being checked, which
may also result in additional continuations to subsequent columns. If a given row is not acceptable in a
given column for the current Trial, it is ignored and the thread associated with that row completes rather
than being used to begin another iteration of the outer loop.

5.7 Exit statements

An exit statement may be used to exit a compound statement while terminating any other threads active
within the compound statement.
An exit statement has the following form:

exit_statement ::=
’exit’ compound_kind [statement_identifier] [with_values]

compound_kind ::= ’if’ | ’case’ | ’block’ | ’loop’

An exit statement exits the specified compound_statement (or in the absence of a statement_identifier, the
immediately enclosing compound_statement of the specified compound_kind), terminating any other threads

28

active within the identified statement. If the exit_statement has a with_values clause, then after terminating
all other threads active within the compound statement, the assignments specified by the with_values clause
are executed.

Example:

const Result : Result_Type;

block
const Resultl := Compute-One_Way (X);
exit block with Result => Resultl;
I
const Result2 := Compute_Other_-Way (X);
exit block with Result => Result2;
end block;

The above block performs the same computation two different ways, and then exits the block with the Result
object assigned to whichever answer is computed first.

29

Chapter 6

Operations

Operations are used to specify an algorithm for computing a value or performing a sequence of actions. There
are two kinds of operations — functions (funcs) and operators (ops). Operators have special meaning to the
language, and are invoked using special syntax. Functions are invoked using a name followed by inputs in
parentheses, and may produce one or more outputs. Operations may update one or more of their variable
inputs.

6.1 Operation Declarations

Operations are declared using the following forms:

operation_declaration ::=
function_declaration | operator_declaration

function_declaration ::=
[>abstract’ | ’optional’] [’queued’] ’func’ identifier inputs
[°->’ outputs]

operator_declaration ::=
[’abstract’ | ’optional’] [’queued’] ’op’ operator_symbol inputs
[>->’ outputs]

operator_symbol ::= string_literal
inputs ::= input | >’ [input { ’;’ input }] °)’
input ::= formal_object | ’<’ formal_object ’>’

formal_object ::=
[input_mode] [identifier_list ’:’] formal_object_type [’:=’ expression]

identifier_list ::= identifier { ’,’ identifier }
input_mode ::=
’var’

| ’ref’ [var_or_const]
| >global’ [’var’]

30

| ’locked’ [’var’]
| ’queued’ [’var’]

formal_object_type ::
object_type
| identifier ’is’ module_instantiation
| operation_type_specifier

outputs ::= output | ’(’ output { ’;’ output } ’)°

output ::=
[output_mode] [identifier ’:’] formal_object_type

output_mode ::= ’ref’ [var_or_const]

If an identifier is omitted for an input, the type_name may be used within the operation to identify the
parameter if it is unique. Otherwise, the parameter is unnamed at the call point. In an operation_definition
(see 6.2) all inputs must either have an identifier, or have a unique type name.

If an identifier is omitted for an output of a function, and there is only one output, the function identifier
may be used to identify the output. If there is more than one output, each one must have an identifier.

If a formal_object_type is of the form identifier ’is’ module_instantiation, the actual parameter
may be of any type that matches the module_instantiation (see 7.4). The specified identifier refers to the type
of the actual parameter within the operation_declaration, and within the corresponding operation_definition.
If a formal_object is bracketed by ’<’ ’>’ then this input may be used as part of a parameter to such an
instantiation within the same operation_declaration. See below for examples (operators "*" and "*x").

If there is no input_mode, or if 'var’ does not appear in the input_mode, then the formal is read-only
within the body of the operation. If the input_mode is 'ref’ without being followed by ’var’ or ’const’, then
within the operation the formal is read-only; however, for any output that is also of mode simply ’'ref’, the
output is (in the caller) a variable reference to the returned object if and only if all of the inputs with mode
merely ‘ref’ are variables in the caller. If any of the inputs with mode ’ref’ are constants, then all of the
outputs with mode ’ref’ are constants.

An output of mode 'ref” must be specified via a return statement as a reference to all or part of an input
of mode 'ref’. An output of mode 'ref’ 'var’ must be specified via a return statement as a reference to all or
part of an input of mode ref’ 'var’. An output of mode ’ref’ ’const’ must be specified via a return statement
as a reference to all or part of some 'ref’ input (’var’, ’const’, or merely ref’).

See section 10.1.1 for the meaning of ’queued’ when applied to an operation as a whole.

See section 7.2 for the meaning of ’abstract’ and ’optional’ when applied to an operation.

Examples:

func Sin (X : Float) —> Float;
op "=?" (Left, Right : Set) —> Ordering;

func Divide (Dividend : Integer; Divisor : Integer)
—> (Quotient : Integer; Remainder : Integer);

func Update(var Obj : T; New_Info : Info_-Type);

ki

op ”indexing” (ref C : Container; Index : Index_Type)
—> ref Element_Type;

op "7 (Left : Float_With_Units;

Right : Right_-Type is Float-With_Units<>)
—> (Result : Result_-Type is Float_-With_Units

31

<Unit_-Dimensions => Unit_Dimensions + Right_-Type.Unit_-Dimensions >);

op 7xx” (Left : Float_With_Units; <Right : Univ_Integer >)
—> (Result : Result_-Type is Float-With_Units
<Unit_Dimensions => Unit_Dimensions * Right>);

6.2 Operation Definitions

An operation may be defined with a body, with an operation import, or by equivalence to an existing
operation.
An operation definition has the following form:

operation_definition ::=
function_definition
| operator_definition
| operation_import
| operation_equivalence

function_definition ::=
function_declaration ’is’
operation_body
’end’ ’func’ identifier

operator_definition ::=
operator_declaration ’is’
operation_body
’end’ ’op’ operator_symbol

operation_body ::= [dequeue_condition] statement_list

operation_import ::=
operation_declaration ’is’ ’import’ ’(’ operation_actuals ’)’

operation_equivalence ::=
operation_declaration ’is’ operation_name
| operation_declaration ’is’ [operation_designator] ’in’ type_specifier

If an operation is declared with a separate, stand-alone operation_declaration, then the operation_declaration
in the operation_definition must fully conform to it. If any annotations appear prior to the ’is’ of the
operation_definition, then they must fully conform to the annotations on the separate operation_declaration.
Similarly, if any comments appear prior to the ’is’ of the operation_definition, then they must fully conform
to comments on the separate operation_declaration.

An operation_import indicates that the operation is defined externally to the current program, possibly
in a different language. The operation_actuals indicate the external name and/or other properites of the
externally defined operation.

An operation_equivalence indicates that the operation is merely a renaming of some existing operation,
identified by the operation_name, or by a type and optional operation_designator. In this latter form, the
existing operation must be declared in the specified type’s module, with the same designator as the new
operation, or with the given operation_designator if specified. The existing operation must have the same
number of inputs and outputs, of the same modes and with the same types.

Examples:

32

func Sin(X : Float) —> Float is import(”sinf”);
// defined exzternally

” |_77 .
-

op "+="(var Left : Set; Right : Element) is
// defined by equivalence

op 7in” (Left : Float; Right : Ordered_Set<Float>)
is in Ordered_Set<Float>; // defined by equivalence

func Update(var Obj : T; New_Info : Info_-Type) is
Obj.Info := New_Info;
end func Update;

func Fib (N : Integer) —> Integer is
// Recursive fibonacci but with linear time

func Fib_Helper (M : Integer)
—> (Prev_Result : Integer; Result : Integer) is
// Recursive "helper” routine which
// returns the pair (Fib(M—1),Fib(M))
if M<= 1 then
// Simple case
return (Prev_Result = M-1, Result => M);
else
// Recursive case
const Prior_Pair := Fib_Helper (M—1);

// Compute nezt fibonacci pair in terms of prior pair
return with
(Prev_Result => Prior_Pair.Result,
Result => Prior_Pair.Prev_Result + Prior_Pair.Result);
end if;
end func Fib_Helper;

// Just pass the buck to the recursive helper function
return Fib_Helper (N). Result;
end func Fib;

6.3 Operation Calls

Operation calls are used to invoke an operation, with inputs and/or outputs.
Operation calls are of the form:

operation_call ::= operation_name ’(’ operation_actuals ’)’

operation_name ::=
[type_identifier ’::’] operation_designator
| object_name ’.’ operation_designator
operation_designator ::= operator_symbol | identifier

operation_actuals ::= [operation_actual { ’,’ operation_actual }]

operation_actual ::=

33

[identifier ’=>’] actual_object
| [identifier ’=>’] actual_operation

actual_object ::= expression
actual_operation ::= operation_specification | ’null’
Unlike other names, an operation_name need not identify an operation that is directly visible. Operations

declared within modules other than the current module are automatically considered, depending on the form
of the operation_name:

e If the operation_name is of the form type_identifier ’::’ operation_designator then only op-
erations with the given designator declared within the module associated with the named type are
considered.

e If the operation_name is of the form object_name ’.’ operation_designator then the call is equiv-
alent to

type_of_object_name ’::’ operation_designator
>(’ object_name ’,’ operation_actuals ’)’

e Otherwise (the operation_name is a simple operation_designator), all operations with the given desig-
nator declared in the modules associated with the types of the operation inputs and outputs, if any,
are considered, along with locally declared operations with the given designator.

Any named operation_actuals, that is, those starting with identifier ’=>’, must follow any positional
operation_actuals, that is, those without identifier ’=>’.

For the execution of an operation call, the operation_actuals are evaluated (in parallel — see 10.2), as are
any default expressions associated with non-global operation inputs for which no actual is provided. For
‘global’” inputs, a global concurrent object with the given identifier must be visible both to the caller and
the called operation, and if it is a 'var’ input, the caller must also have it as a ’global’ 'var’ input. After
parallel evaluation of the operation_actuals, the body of the operation is executed, and then any outputs are
available for use in the enclosing expression or statement.

If the type of one or more of the operation actuals is polymorphic (see 7.2.1), and the operation is declared
in the module that is associated with the root type of the polymorphic type, then the actual body invoked
depends on the run-time type-id of the actual if the corresponding formal parameter is not polymorphic. If
multiple operation actuals have this same polymorphic type (and their corresponding formals are also not
polymorphic), then their run-time type-ids must all be the same.

Examples:

Result := Fib (N = 3);
Graph. Display_Point (X, Y => Sin(X));

var A := Sparse_Array:: Create(Bounds => 1..N);

6.4 Operation Types
In addition to data types which are defined by instantiating a module (see 3.1), there are also operation

types, which are defined by specifying the inputs and outputs that operations of the given type must accept
and produce.

34

operation_type_specifier ::= ’func’ inputs [’->’ outputs]

An operation_type_specifier may be used to specify the type for an input parameter to another operation,
or as the type for a value parameter of a module (see 7.1).
Example:

func Graph_Function (var Win : Widget; To_Be_Graphed : func (X : Float) —> Float);

6.4.1 Lambda Expressions

A lambda expression is used for defining a value of an operation type, typically as part of passing it as an
actual parameter to a module_instantiation or an operation call.
A lambda expression has the following form:

lambda_expression ::=
’lambda’ lambda_inputs ’->’ lambda_body

lambda_inputs ::= identifier | ’(° [identifier { ’,’ identifier }] ’)°
lambda_body ::= expression | ’(’ expression { ’;’ expression } ’)’
Example:

Graph_Function (Window, lambda (X) —> sin (X)x%2);

6.5 Return Statements

A return statement is used to exit the nearest enclosing operation, optionally specifying one or more outputs.
A return statement has the following form:

return_statement ::=
’return’
| ’return’ expression
| ’return’ with_values

If there is no output value specified, any outputs of the immediately enclosing operation must have already
been assigned prior to the return statement. If there is only a single expression, the immediately enclosing
operation must have only a single output.

Examples:

return Fib(N—-1) + Fib(N-2);

return with (Quotient => Q, Remainder => R);

35

Chapter 7

Modules

Modules define a logically related group of types, operations, data, and, possibly, nested modules. Modules
may be parameterized by types, operations, or values.

Every module has an interface that declares its external characteristics. If the interface of a module
declares any non-abstract operations, the module must have a class that defines its internal representation
and algorithms.

7.1 Interface Declaration for a Module
The interface of a module is declared using the following syntax:

interface_declaration ::=
[’abstract’] [’concurrent’] ’interface’ module_identifier
’<? module_formals ’>’
[module_ancestry]
Jis)
{ interface_item }

[’new’
{ interface_item }]

{ ’implements’ restricted_interface_item_list }
’end’ ’interface’ module_identifier ’;’
module_identifier ::= identifier { ’::’ identifier }

interface_item ::=
type_declaration
| operation_declaration
| operation_import
| operation_equivalence
| object_declaration
| interface_declaration

Module formal parameters have the following form:

module_formals ::= [module_formal { ’;’ module_formal }]

36

module_formal ::= formal_type | formal_valuie
formal_type ::= [identifier ’is’] interface_name ’<’ module_actuals ’>’

formal_value ::= [identifier_list ’:’] object_type [’:=’ expression]

See section 7.2 below for the syntax of module_ancestry and restricted_interface_item_list, and for an expla-
nation of the use of new’ to separate overriding from non-overriding operations.
Example (also used in section 3.1):

interface List <Element_Type is Assignable<>> is

func Create() —> List;

func Is_Empty (L : List) —> Boolean;

func Append(var L : List; Elem : Element_Type);

func Remove_First(var L : List) —> optional Element_Type;

func Nth_Element(ref L : List; N : Univ_Integer) —> ref optional Element;
end interface List;

This defines the interface to a List module, which provides operations for creating a list, checking whether
it is empty, appending to a list, removing the first element of the list, and getting a reference to the Nth
element of the list.

7.2 Module Inheritance and Extension

A module may be defined as an extension of an existing module, and may be defined to implement the
interface of one or more other modules.

module_ancestry ::=
[’extends’ [identifier ’:’] module_name [’<’ module_actuals ’>’]]
[’implements’ module_list]

module_name ::= module_identifier
module_list ::=
module_name ’<’ module_actuals ’>’
{ ’,’ module_name ’<’ module_actuals ’>’ }

If a module M2 eztends a module M1, but does not specify the module_actuals for M1, then M2 inherits all
of the module formals of M1. Otherwise, module M2 must have its own set of formals, which may then be
used to instantiate M1.

When extending M1, the instance of module M1 defined by the specified module_actuals, or by sub-
stituting the corresponding formals of M2 into M1, is called the underlying type for M2. A module has an
underlying type only if it is defined to extend some other module. If a module M2 has an underlying type,
then there is an underlying component of each object of any type produced by instantiating the module M2.
This underlying component is of the underlying type, and is by default named by the identifier of the module
being extended (e.g. M1), but may be given its own identifier by specifying it immediately after ’extends’.

In addition to possibly inheriting module formals, if a module M2 eztends a module M1, it also inherits
operations from the interface of M1. As part of inheriting an operation from M1, the types of the non-
polymorphic (see 7.2.1) inputs and outputs of the operation are altered by replacing each occurrence of the
original module name M1 with the new module name M2, and by substituting in the module parameter
names of M2 for the corresponding module parameter names of M1. For example, an operation such as
func Invert(X : M1) -> M1 becomes func Invert(X : M2) -> M2.

37

An operation inherited from M1 is abstract only if the corresponding operation in M1 is abstract, or if
the operation has an output which is of a type based on M1 (as is Invert in the above example). If the
operation inherited from M1 is not abstract, then its implicit body is defined to call the operation of M1,
with any input to this operation that is of the underlying type being passed the underlying component of
the corresponding input to the inherited operation.

If an operation in M1 has no non-polymorphic inputs or outputs based on M1, but its first input is poly-
morphic, then as part of inheriting the operation, this first input has its type changed from being based on M1
to being based on M2. The types of other inputs or outputs are unaffected. So for example, an operation like
func Union(Left, Right : M1+) -> M1+ becomes func Union(Left : M2+, Right : M1+) -> Mi+. (Note
that overriding such an inherited operation allows polymorphic operations to be specialized based on their
first input.)

An inherited operation may be overridden by providing a declaration for the operation in the interface of
the new module with the same name and number and types of inputs and outputs as the inherited operation.
An abstract inherited operation must be overridden unless the new module is itself specified as ’abstract’.
The declarations for any operations that override inherited operations must appear before the reserved word
’new’, and the operations that do not override an inherited operation must appear after the *new’ (if it is
present in the interface).

Finally, if M1 has components, then if M2 extends M1, it also inherits these components, with any visible
components of M1 becoming visible components of M2.

If rather than extending M1, the module M2 implements M1 (directly or indirectly), and M2 is not itself
declared as an abstract module, then M2 is required to declare in its interface a corresponding operation for
each non-optional operation of module M1 that has at least one (non-polymorphic) input or output based on
M1, but with the change in types of inputs and outputs from M1 to M2, as described above for inheritance.
Operations in M1 that have no (non-polymorphic) inputs or outputs based on M1 need not be declared in
M2.

If M1 has wisible components, then it cannot be implemented by other modules, though it may still be
extended.

restricted_interface_item_list ::=
[’for’ module_name { ’,’ module_name }]
{ interface_item }

One or more restricted_interface_item_lists may be included at the end of an interface, each intro-
duced by the reserved word ’implements’, so as to meet the requirements for implementing some other
module. These interface items are restricted in that they cannot be referenced directly. They are only
available as definitions of operations required when the given interface is used in a context where some other
module is expected. The interface items in a given restricted_interface_item_list may be used to
implement any module, unless an explicit list of module_names is given after a >for’, in which case these
additional items are only available when the interface is used to implement the specified modules.
Example:

interface Skip_List
<Skip_Elem_Type is Assignable<>; Initial_Size : Univ_Integer := 8>
extends List<Element_Type => Skip_Elem_Type>
implements Set<Elem_Type => Skip_Elem_Type> is

// The following operations are implicitly declared
// due to being inherited from List<Skip_Elem_Type>:

// abstract func Create() —> Skip_List;

// func Is_Empty(L : Skip_List) —> Boolean;

// func Append(var L : Skip_List; Elem : Skip_Elem_Type);

// func Remowve_First(var L : Skip_List) —> optional Skip_-Elem_Type;
// func Nth_Element(ref L : Skip_List; N : Univ_Integer)

38

// —> ref optional Skip_Elem_Type;

func Create () —> Skip_List;
// This overrides the abstract inherited operation

// Here we may override other inherited operations
// or introduce new operations

implements for Set
func Add(var L : Skip_-List; Elem : Skip_Elem_Type) is Append;
// An operation required by the Set module, but which
// is not to be directly callable on a Skip_List.

end interface Skip_List;

7.2.1 Polymorphic Types

If the name of a type is of the form identifier ’+’, it denotes a polymorphic type. A polymorphic type
represents the identified type plus any type that extends or implements the identified type’s interface, with
matching module actuals. The identified type is called the root type for the corresponding polymorphic type.

For example, given the Skip_List interface from the example in 7.2, and the Bool_List type from section
3.1:

type Bool_Skip_List is Skip_List<Boolean >;

var BL : Bool_List+ := Bool_Skip_List :: Create ();

The variable BL can now hold values of any type that is an instance of a module that implements the List
interface, with Element_Type specified as Boolean. In this case it is initialized to hold an object of type
Bool _Skip_List.

An object of a polymorphic type (a polymorphic object) includes a type-id, a run-time identification of
the (non-polymorphic) type of the value it currently contains. The type-id of a polymorphic object may
be tested with a membership test (see 4.2.2) or a case statement (see 5.4), and it controls which body is
executed in certain operation calls (see 6.3). In the above example, the type-id of BL initially identifies the
Bool _Skip_List type.

7.3 Class Definition for a Module

A class defines local types, operations, and data for a module, as well as a body for each operation declared
in the module’s interface.
A class has the following form:

class_definition ::=
[’concurrent’] ’class’ module_identifier
[’<’ module_formals ’>’]
[module_ancestry]
)is)
{ local_class_item }

’exports’

{ exported_class_item }

39

{ ’implements’ restricted_class_item_list }
’end’ ’class’ module_identifier ’;’

local_class_item ::=
type_declaration
operation_declaration
operation_definition
object_declaration
interface_declaration
class_definition

exported_class_item ::=
operation_definition
| object_declaration
| class_definition

restricted_class_item_list ::=
[>for’ interface_name_list] { exported_class_item }

An exported_class_item must correspond to an item declared in the module’s interface. An exported_class_item
within a restricted_class_item _list must correspond to an item declared within a corresponding restricted_interface_item_list
in the module’s interface.

Within an object_declaration in a class, a name may refer to any prior class_item using its simple identifier.
Within a type_declaration in a class, a name within a value_constraint may refer to a local constant, but if
the constant is not initialized at its declaration, the type has an object-specific constraint and may only be
used within subsequent local (object-specific) type and object declarations (see the Index_Type of the Stack
class in chapter 9 for an example of an object-specific constraint). Within other kinds of class_items, local
interfaces, non-object-specific types, operations, and initialized constants may be referred to directly, but
local variables and uninitialized constants are considered components of objects of a type associated with
the enclosing class, and must be referred to using component_selection notation (see 4.1.1).

Example:

class List is
interface List_Node<> is
var Elem : Element_Type;
var Next : optional List_Node;
end interface List_Node;
var Head : optional List_Node<>;
exports
func Create() —> List is
return (Head => null);
end func Create;

func Is_Empty (L : List) —> Boolean is
return L.Head is null; // Must say ”L.Head,” not simply ”Head”
end func Is_Empty;

func Append(var L : List; Elem : Element_Type) is
for X => L.Head loop
if X is null then
// Found the end, add new component here
X := (Elem => Elem, Next => null);

40

else
// Iterate with next node
continue loop with X => X.Next;
end if;
end loop;
end func Append;

func Remove_First(var L : List) —> optional Element_Type is
if L.Head is null then
// List is empty, nothing to return
return null;
else
// Save first element and then delete node from list
Remove_First := L.Head.Elem;
L.Head := L.Head.Next;
return; // Output already assigned
end if;
end func Remove_First;

func Nth_Element(ref L : List; N : Univ_Integer)
—> ref optional Element is
for (X => L.Head; I := 1) loop
if X is null then
// reached end of list
return null;
elsif I = N then
// reached Nth element
return X.Elem;
else
// continue with next node of list
continue loop with (X => X.Next, I = I+1);
end if;
end loop;
end func Nth_Element ;

end class List;

The above class defines the module List whose interface is given in 7.1. The items preceding exports are
local to the module, and are used to implement the linked list structure. The items after exports correspond
to the items declared in the List interface.

TBD: Private interfaces, module extensions, module specializations

7.4 Module Instantiation

Modules are instantiated by providing actuals to correspond to the module formals. If an actual is not
provided for a given formal, then the formal must have a default specified in its declaration, and that default

is used.
The actual parameters used when instantiating a module to produce a type have the following form:

module_actuals ::= [module_actual { ’,’ module_actual }]
module_actual ::=

[identifier ’=>’] actual_type
| [identifier ’=>’] actual_value

41

actual_type ::= object_type

Any module actuals with a specified identifier must follow any actuals without a specified identifier. The
identifier given preceding ’=>’ in a module_actual must correspond to the identifier of a formal parameter
of the corresponding kind.

42

Chapter 8

Containers

A container is a type that defines an ”indexing” operator, an ”index_set” operator, a container aggregate
operator ”[]”, a combining assignment operator " |=", and, optionally, a ”slicing” operator. It will also typi-
cally define a Length or Count function, other operations for creating containers with particular capacities,
for iterating over the containers, etc.

The indez type of a container type is determined by the type of the second parameter of the ”indexing”
operator, and the value type of a container type is determined by the type of the result of the ”indexing”
operator.

The indez-set type of a container type is the result type of the ”index_set” operator, and must be either
a set or interval over the index type.

Examples:

interface Map<Key_Type is Hashable<>; Element_Type is Assignable<>> is
op ”[]”() —> Map;
op ”"|="(var M : Map; Key : Key.Type; Elem : Element_-Type);

op ”indexing” (ref M : Map; Key : Key_Type)
—> ref optional Element_Type;
op ”index_set” (M : Map) —> Set<Key_Type>;
end interface Map;

The Map interface defines a container with Key_Type as the index type and Element_Type as the value
type. The interface includes a parameterless container aggregate operator ”[]” which produces an empty
map, a combining operator " |=" which adds a new Key => Elem pair to the map, ”indexing” which returns
a reference to the element of M identified by the Key (or null if none), and ”index_set” which returns the
set of Keys with non-null associated elements in the map.

interface Set<Element_Type is Hashable<>> is
op 7[]”() = Set; // Empty set
op ”|="(var S : Set; Elem : Element_Type);
func Count(S : Set) —> Univ_Integer;
op 7in” (Elem : Element_-Type; S : Set) —> Boolean;
op ”indexing” (ref S : Set;
Index : Univ_Integer {Indez in 1..Count(S)})
—> ref Elem;
op 7index_set” (S : Set) —> Interval<Univ_Integer >;
op "=?"(Left, Right : Set) —> Ordering;
end interface Set;

The Set interface defines a container with the Element_Type as the value type and Univ_Integer as the index
type. The interface includes a parameterless container aggregate operator ”[]” which produces an empty
set, a combining operator " |=" which adds a new element to the set, an ”in” operator which tests whether

43

a given element is in the set, an ”indexing” operator which returns the n-th element of the set, and an
”index_set” operator which returns the interval of indices defined for the set (i.e. 1..Count(S)). The compare
operator ("=7" — see 4.2.1) is provided for comparing sets for equality and subset/superset relationships.

interface Array<Component_Type is Assignable<>; Indexed By is Countable<>> is
type Bounds_Type is Interval<Indexed_By >;
func Bounds(A : Array) —> Bounds_Type;

Op ” [] ”
(Index_Set : Bounds_Type; Values : Map<Bounds_Type, Component_Type>)
—> Result : Array {Bounds(Result) == Index_Set} ;

op ”indexing” (ref A : Array;
Index : Indexed_By {Index in Bounds(A)})
—> ref Component_Type;
op "index_set” (A : Array)
—> Result : Bounds_Type {Result == Bounds(A)} ;

9

op ”slicing” (ref A : Array;

Slice : Bounds_Type { Slice <= Bounds(A)})

—> ref Result : Array {Bounds(Result) == Slice} ;
op 7|="(var A : Array;

Index : Indexed-By {Index in Bounds(4)} ;
Value : Component_Type);
op 7|="(var A : Array;
Slice : Bounds_-Type {Slice <= Bounds(4)} ;
Value : Component_Type);
end interface Array;

The Array interface defines a container with Component_Type as the value type and Indexed By as the
index type. The index-set type is Bounds_ Type. The interface includes a container aggregate operator ”[]”
which creates an array object with the given overall Index_Set and the given mapping of indices to values.
It also defines an ”indexing” operator which returns a reference to the component of A with the given
Index, a ”slicing” operator which returns a reference to a slice of A with the given subset of the Bounds, plus
combining operators " |=" which can be used to specify a new value for a single component or all components
of a slice of the array A.

8.1 Object Indexing and Slicing

Object indexing is used to invoke the ”indexing” operator to obtain a reference to an element of a container
object. Object slicing is used to invoke the ”slicing” operator to obtain a reference to a subset of the elements
of a container object.

Object indexing and slicing use the following syntax. The form with *[..]’ is only for slicing.

object_indexing_or_slicing ::=
object_name ’[’ operation_actuals ’]’
| object_name ’[..]’

If the form with *[..]’ is used, or one or more of the operation_actuals are sets or intervals, then the
construct is interpreted as an invocation of the ”slicing” operator. Otherwise, it is interpreted as an invocation
of the ”indexing” operator. The object_name denotes the container object being indexed or sliced.

When interpreted as an invocation of the ”slicing” operator, the construct is equivalent to:

"slicing" ’(’ object_name ’,’ operation_actuals ’)’

44

or, for the form using > [..]7:
"slicing" ’(’ object_name ’)’

When interpreted as an invocation of the ”indexing” operator, the construct is equivalent to:
"indexing" ’(’ object_name ’,’ operation_actuals ’)’

The implementation of an ”indexing” operator must ensure that, given two invocations of the same ”indexing”
operator, if the actuals differ between the two invocations, then the results refer to different elements of
the container object. Similarly, the implementation of a ”slicing” operator must ensure that, given two
invocations of the same ”slicing” operator, if at least one of the actuals share no values between the two
invocations, then the results share no elements.

If an implementation of the ”indexing” operator and an implementation of the ”slicing” operator for
the same container type have types for corresponding inputs that are the same or differ only in that the
one for the ”slicing” operator is an interval or set of the one for the ”indexing” operator, then the two
operators are said to correspond. Given invocations of corresponding ”indexing” and ”slicing” operators,
the implementation of the operators must ensure that if at least one pair of corresponding inputs share no
values, then the results share no elements of the container object. A slice defined using ’> [..]’ is presumed
to refer to all elements of the container.

Examples:

Table [Key] += 1; // bump up Table entry associated with Key

Al1..3] <= A[4..6]; // swap halves of 6—element array
Qsort (V[..]); // Pass a slice representing all of V to Qsort

8.2 Container Aggregates

A container aggregate is used to create an object of a container type, with a specified set of elements,
optionally associated with explicit indices.

container_aggregate ::=
empty_container_aggregate
universal_container_aggregate
positional_container_aggregate
named_container_aggregate
iterator_container_aggregate

empty_container_aggregate ::= ’[]°
universal_container_aggregate ::= ’[..]’

positional_container_aggregate ::=
>[’ positional_container_element { ’,’ positional_container_element } ’]’

positional_container_element ::= expression | default_container_element

default_container_element >..? ?’=>’ expression

named_container_aggregate ::
’[’ named_container_element { ’,’ named_container_element } ’]°

45

named_container_element ::=
choice_list ’=>’ expression
| default_container_element

iterator_container_aggregate ::=
>[? ’for’ iterator [value_filter] [’,’ index_expr] ’=>’ expression ’]’

index_expr ::= expression

An empty_container_aggregate is only permitted if the container type has a parameterless container aggregate
operator ”[]”.

A universal_container_aggregate is only permitted if the container type has a universal set operator ”|[..]

The choice_list in a named_container_element must be a set of values of the index type of the container.
The expression in a container_element must be of the value type of the container.

If present in a container_aggregate, a default_container_element must come last. A default_container_element
is only permitted when the container_aggregate is being assigned to an existing container object, or the index-
set type of the container has a universal set operator ”[..]”.

In an iterator_container_aggregate, the iterator must not be an initial value_iterator, and if it is an
initial_next_while_iterator, it must have a while_or_until condition.

The evaluation of a container_aggregate is defined in terms of a call on a container aggregate operator

7

7[)? or ”[..]”, optionally followed by a series of calls on the combining move operation "<|=" (for posi-
tional_container_aggregates) or the "var_indexing" operator (for named_container_aggregates).
For the evaluation of an empty_container_aggregate, the parameterless container aggregate operator ”[]” is

called. For the evaluation of a universal_container_aggregate, the parameterless universal container aggregate
operator ”[..]” is called.
For the evaluation of a positional_container_aggregate or a named_container_aggregate:

e if there is a container aggregate operator ”[]” which takes an index set and a mapping of index subsets to
values, this is called with the index set a union of the indices defined for the aggregate, and the mapping
based on the container elements specified in the container_aggregate. The default_container_element is
treated as equivalent to the set of indices it represents.

e if there is only a parameterless container aggregate operator ”[]” then it is called to create an empty
container; the combining operator "<|=" is then called for each positional_container_element in the
aggregate, while the "var_indexing" operator is called for each named_container_element, with a
choice_list of more than one choice resulting in multiple calls.

If there is a default_container_element, it is equivalent to a container_element with a choice_list that covers
all indices of the overall container not covered by earlier container_elements.

For the evaluation of an iterator_container_aggregate, the expression is evaluated once for each element of
the sequence of values produced by the iterator, with the loop variable of the iterator bound to that element.
If an explicit index_expr is present, it is provided as the index to the "var_indexing" operator. Otherwise,
the loop variable is implicitly provided as the index, unless only the "<|=" operator is available, in which
case no index is used. If there is a value_filter, the expression is evaluated only for elements of the sequence
that satisfy the value_filter.

Examples:

[1, 2, 3, 4, 5] // positional container aggregate
[1.5 = 1, .. = 0] // mamed with default
[#red => 0x1, #green => 0x10, #blue => 0x100]
// all named
[for I in 0..10 {I mod 2 == 0} = 1 xx 2 | // table of even squares
[for I in 1..N, Key[I] => Value[l]] // mapping given key/value wvectors

46

8.3 Container Element Iterator

An element iterator may be used to iterate over the elements of a container.
An element iterator has the following form:

element_iterator ::=
identifier [’:’ type_name] ’of’ expression
| >[’ identifier ’=>’ identifier ’]’ ’of’ expression

An element_iterator is equivalent to an iterator over the index set of the container identified by the expression.
In the first form of the element_iterator, in each iteration the identifier denotes the element of the con-
tainer with the given index. In the second form of the element_iterator, the first identifier has the value
of the index itself, and the second identifier denotes the element at the given index in the container. The
identifier denoting each element of the container is a variable if and only if the container identified by the
expression is a variable.

Example:

for each [Key => Value | of Table loop
// Iterate over key/value pairs of table
Display (Output, Key, Value);

end loop;

8.4 Container Specifiers

There are various operations in ParaSail for moving rather than copying objects and components of objects,
such as the "<==" and the "<|=" operations (see section 5.2). These can be used to reduce the amount
of copying that is performed, which can be important when dealing with containers whose elements are
themselves large objects. In some cases, we may build up a large object, with the intent of moving it into
a container. In this case, there is some advantage to indicating, when the object is declared, that it is
specifically intended to be moved into a particular container or other object when complete. This will cause
its storage to be allocated in the same region as that of the specified container or other existing object.

The container or object whose region is to be used may be indicated when declaring an object, using a
container_specifier, whose syntax is as follows:

container_specifier ::= ’for’ object_name

Examples:

// Compute the intersection of Left and Right
// and put result back in Left.
var Result : Set for Left := []; // Result in same region as Left
for Elem in Right loop
if Elem in Left then

Result |= Elem; // Add Elem to intersection
end if;
end loop;
Left <== Result; // Move result to be new wvalue for Left.

47

Chapter 9

Annotations

Annotations may appear at various points within a program. Depending on their location, they can represent

a precondition of an operation, a postcondition of an operation, a value constraint on a type, a value filter

on an iterator, an invariant of a class, or a simple assertion at a point in a sequence of statements.
Annotations have the following form:

annotation ::= ’{’ [label] condition { ’;’ condition } ’}’

The optional label of an annotation is for documentation purposes only. When an annotation appears
as the value filter for an iterator, any values that do not satisfy the condition(s) of the annotation are
skipped. In any other context, the condition(s) of an annotation must each evaluate to true under every
possible execution of the program. The ParaSail compiler will complain if some condition of an annotation
might not always be true, or if it cannot be proved to be always true by the compiler.

postcondition_value ::= object_name ’’’

universal_conversion ::= ’[[’ expression ’]]°

Within an annotation that is used as a postcondition, a postcondition_value (e.g. S?) refers to the value
of the specified object (e.g. S) after the operation is complete. The specified object must be a variable input
to the operation.

An expression of the form > [[> expression ’]]°’ may be used to convert an expression to a universal
type, generally for use in an annotation. The type of the expression must have a "to_univ" operator; the
type of the universal_conversion is the result type of this operator.

Examples:

func Sqrt(X : Float { X>= 0.0 }) —> Float {Sqrt >= 0.0};
The first annotation is a precondition; the second is a postcondition.

type Age is new Integer <0..200>;
type Minor is Age { Minor < 18 };
type Senior is Age { Senior >= 50 };

These annotations define value constraints on two different subtypes of the Age type.

interface Modular< Modulus : Univ_Integer {Modulus >= 2} > is
op ”from_univ” (Univ : Univ_Integer {Univ in 0 ..< Modulus})
—> Modular;

op "to_univ”(Val : Modular) — Result : Univ_Integer
{ Result in 0 ..< Modulus };

48

op "+” (Left, Right : Modular) —> Result : Modular
{ [[Result]] == ([[Left]] + [[Right]]) mod Modulus };

end interface Modular;

The precondition on "from_univ" indicates the range of integer literals that may be used with a modular
type with the given modulus. The postcondition on "to_univ" indicates the range of values returned on
conversion back to Univ_Integer. The postcondition on "+" expresses the semantics of the Modular "+"
operator in terms of the language-defined operations on Univ_Integer.

Here is a longer example:

interface Stack
<Component is Assignable <>;
Size_Type is Integer<>> is
func Max_Stack_Size(S : Stack) —> Size_Type;
func Count(S : Stack) —> Size_Type;

func Create(Max : Size_Type {Maz > 0}) —> Stack
{Maz_Stack_Size (Create) == Maz; Count(Create) == 0};

func Push
(var S : Stack {Count(S) < Maz_Stack_Size(S)};
X : Component) {Count(S’) == Count(S) + 1};

func Top(ref S : Stack {Count(S) > 0}) —> ref Component;

func Pop(var S : Stack {Count(S) > 0})
{Count(S’) == Count(S) — 1};

end interface Stack;

class Stack is
const Max_Len : Size_Type;
var Cur_Len : Size_Type {Cur_Len in 0..Maz_Len};
type Index_Type is Size_Type {Index_Type in I1..Maz_Len};
var Data : Array<optional Component, Indexed_ By => Index_Type>;
exports
{for all I in 1..Cur_Len => Data[I] not null} // invariant for Top()

func Max_Stack_Size (S : Stack) —> Size_Type is
return S.Max_Len;
end func Max_Stack_Size;

func Count(S : Stack) —> Size_Type is
return S.Cur_Len;
end func Count;

func Create(Max : Size_Type {Maz > 0}) —> Stack
{Maz_Stack_Size (Create) == Maz; Count(Create) == 0} is
return (Max_Len => Max, Cur_-Len => 0, Data => [.. => null]);
end func Create;

func Push
(var S : Stack {Count(S) < Maz_Stack_Size(S)};

X : Component) {Count(S’) == Count(S) + 1} is
S.Cur_Len += 1;
S.Data[S.Cur_Len] := X;

49

end func Push;

func Top(ref S : Stack {Count(S) > 0}) —> ref Component is
return S.Data[S.Cur_Len];
end func Top;

func Pop(var S : Stack {Count(S) > 0})
{Count(S’) == Count(S) — 1} is
S.Cur_.Len —= 1;
end func Pop;
end class Stack;

This example illustrates annotations used as preconditions ({Count (S) > 03}), postconditions ({Count (S’) ==

Count (8) - 1}), value constraints ({Cur_Len in 0..Max_Len}), and a class invariant ({for all I in 1..Cur_Len
=> Data[I] not nulll}).

50

Chapter 10

Concurrent Objects

Expression evaluation in ParaSail proceeds in parallel (see 6.3), as do statements separated by * | |’ (see 5.1),
and the iterations of a concurrent loop (see 5.6 and 5.6.1). The ParaSail implementation ensures that this
parallelism does not introduce race conditions, situations where a single object is manipulated concurrently
by two distinct threads without sufficient synchronization. A program that the implementation determines
might result in a race condition is illegal.

Objects in ParaSail are either concurrent or sequential, according to whether their type is defined by
instantiating a concurrent or non-concurrent module. Concurrent objects allow concurrent operations by
multiple threads by using appropriate hardware or software synchronization. Sequential objects allow con-
current operations only on non-overlapping components.

10.1 Concurrent Modules

A module is concurrent if its interface is declared with the reserved word ’'concurrent’. The class defining
a concurrent module must also have the reserved word ’concurrent’. Types produced by instantiating a
concurrent module are concurrent types.

Example:

concurrent interface Atomic<Item_Type is Machine_Integer<>> is
func Create(Initial_-Value : Item_Type) —> Atomic;
func Test_And_Set(var X : Atomic) —> Item_Type;
// If X == 0 then set to 1; return old value of X
func Compare_And_Swap (var X : Atomic;
Old_Val, New_Val : Item_Type) —> Item_Type;
// If X == 0Old_-Val then set to New_-Val; return old value of X
end interface Atomic;

var X : Atomic<Int_32> := Create(0);
var TAS_Result : Int_32 := —1;

var CAS_Result : Int_32 := —1;
block

TAS_Result := Test_And_Set (X);

I
CAS_Result := Compare_And_Swap (X, 0, 2);

end block;
// Now either TAS_Result == 0, CAS_Result == 1, and X is 1,
// or TAS_Result == 2, CAS_Result == 0 and X is 2.

This is an example of a concurrent module which defines an atomic object which can hold a single Ma-
chine_Integer, and can support concurrent invocations by multiple threads of Test_And_Set and Com-

51

pare_And_Swap operations. The implementation of this module would presumably use hardware synchro-
nization.

10.1.1 Locked and Queued Operations

The operations of a concurrent module M may include the reserved word ’locked’ or 'queued’ for inputs of
a type based on M. If a concurrent module has any operations that have such inputs, then it is a locking
module; otherwise it is lock-free. Any object of a type based on a locking module includes an implicit lock
component.

If an operation has an input that is marked ’locked’; then upon call, a lock is acquired on that input. If
it is specified as a ’var’ input, then an exclusive read-write lock is acquired; if it is not specified as a ’var’
input then a sharable read-only lock is acquired. Once the lock is acquired, the operation is performed, and
then the caller is allowed to proceed.

If an operation has an input that is marked 'queued’, then the body of the operation must specify a
dequeue condition. A dequeue_condition has the following form:

dequeue_condition ::= ’queued’ while_or_until condition ’then’

A dequeue condition is satisfied if the condition evaluates to true and the reserved word ’until’ appears, or
if the condition evaluates to false and the reserved word 'while’ appears.

Upon call of an operation with a ’queued’ input, a read-write lock is acquired, the dequeue condition
of the operation is checked, and if satisfied, the operation is performed, and then the caller is allowed to
proceed. If the dequeue condition is not satisfied, then the caller is added to a queue of callers waiting to
perform a queued operation on the given input.

Within an operation of a concurrent module, given an input that is marked ’locked’ or 'queued’; the
components of that input may be manipulated knowing that an appropriate lock is held on that input
object. If there is a concurrent input that is not marked ’locked’ or ’queued’, then there is no lock on that
input, and only concurrent components of such an input may be manipulated directly.

If upon completing a locked or queued operation on a given object, there are other callers waiting to
perform queued operations, then before releasing the lock, these callers are checked to see whether the
dequeue condition for one of them is now satisfied. If so, the lock is transferred to that caller and it performs
its operation. If there are no callers whose dequeue conditions are satisfied, then the lock is released, allowing
other callers not yet queued to contend for the lock.

If an operation of a module performs a call on a queued operation internally, but does not have a queued
parameter, then the operation as a whole must be marked with the reserved word ’queued’ prior to the
reserved word ’func’ or ’op’ (see 6.1). This indicates that an indefinite delay within the operation might
occur, while waiting for the dequeue condition associated with some call to be satisfied. Such operations
must not be called from within a locked operation, as they could cause a lock to be held indefinitely. On the
other hand, operations with a parameter explicitly marked as >queued’ may be called while already holding
a lock on that parameter, but the dequeue condition must already be satisfied at the point of call.

Example:

concurrent interface Queue<Element_Type is Assignable<>> is
func Create() —> Queue;
func Append(locked var Q : Queue; Elem : Element_Type);
func First (locked Q : Queue) —> optional Element_Type;
// Returns null if queue is empty.
func Remove_First (queued var Q : Queue) —> Element_Type;
// Queued until the queue has at least one element
end interface Queue;

var Q : Queue<Int32> := Create();
var A : Int32 := 0;
var B : Int32 := 0;

52

block
Append (Q, 1); Append(Q, 2);
|

A := Remove_First(Q);

[l
B := Remove_First (Q);
end block;
// At this point, either A == 1 and B == 2
// or A == 2 and B == 1.

In this example, we use a locking module Queue and use locked and queued operations from three separate
threads to concurrently add elements to the queue and remove them, without danger of unsynchronized
simultaneous access to the underlying queuing data structures.

10.2 Concurrent Evaluation

Two expressions that are inputs to an operation call (see 6.3) or a binary operator (see 4.2.1) are evaluated
in parallel in ParaSail, as are the expressions that appear on the right hand side of an assignment and those
within the object_name of the left hand side (see 5.2). In addition, the separate statement_threads of a
statement_thread_group (see 5.1) are performed in parallel. Finally, the iterations of a concurrent loop (see
5.6) are performed in parallel.

Two object_names that can be part of expressions or statements that are evaluated concurrently must
not denote overlapping parts of a single sequential object, if at least one of the names is the left-hand
side of an assignment or the actual parameter for a 'var’ parameter of an operation call. Distinctly named
components of an object are non-overlapping. Elements of a container associated with distinct indices are
non-overlapping (see 8.1).

Examples:

func Bump(var A : Int) —> Int;

X:=3] X:=5 // tllegal

X:=3|lY:=X // illegal

A =X || B:=X // legal

A[I] =2 || A[J] =3 // illegal if I can equal J
p() + X // illegal

X := Bump(X) // legal

53

Chapter 11

ParaSail Source Files and Standard
Library

11.1 ParaSail Source Files

Each ParaSail source file is made up of a sequence of standalone module or operation definitions. Import
clauses can be used to restrict which other modules or operations are visible when defining a given standalone
module or operation.

source_file ::=
[program_unit_list] { import_clause_list program_unit_list }

program_unit_list ::= standalone_program_unit { standalone_program_unit }
import_clause_list ::= import_clause { import_clause }

standalone_program_unit ::=
interface_declaration | class_definition | operation_definition

11.2 Import Clause

The import_clause may be used to control which other standalone program units are visible within a given
program_unit_list.

import_clause ::=

>import’ imported_module_specification { ’,’ imported_module_specification }
imported_module_specification ::= module_identifier [2::” ’x’>] | %’
Examples:

import Acme:: Utilities :: Graphics
import Acme:: Killer _App ::x

An import_clause without an * allows the specified program unit to be referenced within the following
program_unit_list, using either its full name or its simple name. An import_clause with a * allows any
program unit whose full name has the given prefix to be referenced, and also provides direct visibility to

54

the simple names of the units immediately within the module identified by the given prefix. Hence, the
above example allows reference to the program unit Acme: :Utilities: :Graphics, and to all program units
with names of the form Acme: :Killer_App::.... In addition, the simple name Graphics may be used to
refer to Acme: :Utilities: :Graphics, and if there is a Acme::Killer_App::Driver program unit and a
Acme: :Killer_App::GUI program unit, then the simple names Driver and GUI, respectively, may be used
to refer to these units.

Standalone program units that appear in a source file before any explicit import_clauses, are provided
with a default import clause. If the name of the standalone unit is of the form A::B::C then the default
import clause is:

import A::B::x*
If the name of the standalone unit is a simple name (such as A), then the default import clause is:
import *

The net effect of the default import clause is to make the names of the the sibling program units directly
visible.

After an import_clause_list appears in a source file, these imports apply until the next import_clause_list,
or the end of the source file, whichever comes first. That is, an import_clause_list applies only to the
immediately following program_unit_list.

Two additional import clauses apply to all ParaSail source code:

import PSL::Core::*
import PSL::Containers::*

This makes the names of the standard library modules in the Core and Containers subsystems directly
visible to all ParaSail code.

11.3 ParaSail Syntax Shorthands

ParaSail syntax is not as rigid as implied by the BNF given in this reference manual. In particular, semicolons
at the end of a statement or declaration may be omitted. In addition, ParaSail allows the end XXX indications
to be omitted, by adopting a Python-like convention of using ’:’ instead of is, then, loop, and of, and
relying on indentation to indicate where the corresponding construct ends.

For example, the following is a legal use of these shorthands:

func Fib (N : Integer) —> Integer:
// Recursive fibonacci but with linear time

func Fib_Helper (M : Integer)
—> (Prev_Result : Integer; Result : Integer):
// Recursive "helper” routine which
// returns the pair (Fib(M—1),Fib (M))
if M<= 1:
// Simple case
return (Prev_Result => M—-1, Result => M)
else:
// Recursive case
const Prior_Pair := Fib_Helper (M-1)

// Compute next fibonacci pair in terms of prior pair

return with
(Prev_Result => Prior_Pair.Result,

55

Result => Prior_Pair.Prev_Result + Prior_Pair.Result)

2.0

end func Fib_Helper // This is optional because wused

// Just pass the buck to the recursive helper function
return Fib_Helper (N). Result

11.4 ParaSail Standard Library

ParaSail includes a number of language-provided modules, with names of the form PSL::Core::* and
PSL: :Containers: :*. These are all defined in the source file "aaa.psi", and that file should be used
as a reference for use of these standard modules.

Several of these modules are parameterless, and act as the predefined types of the language:

Univ_Integer<> arbitrary length integers

Univ_Real<> ratio of two Univ_Integers, with plus/minus zero and plus/minus infinity

Univ_Character<> 31-bit ISO-10646 (Unicode) characters

Univ_String<> vector of Univ_Characters

Univ_Enumeration<> all values of the form # identifier

Boolean<> an enumeration type with two values #false and #true

Ordering<> an enumeration type with four values #less, #equal, #greater, and #unordered
The other language-provided modules include:

abstract interface Any<> all types implement Any<>implicitly

abstract interface Assignable<> provides ":=" "<==" and "<=>" operations; all but concurrent types
and reference types implement Assignable<>implicitly

abstract interface Comparable<> provides "=7" operator
abstract interface Hashable<> implements Assignable<>, Comparable<>; provides Hash operation

abstract interface Countable<> implements Hashable<>; provides "+" and "-" operators to add or
subtract Univ_Integers to progress through the values of the type

interface Vector<Element_Type is Assignable<>> an extensible array indexed by Univ_Integer start-
ing at 1

interface ZVector<Element_Type is Assignable<>> an extensible array indexed by Univ_Integer
starting at 0

interface Enum<Values : Vector<Univ_Enumeration>> implements Countable<>; used to define
a new enumeration type given the enumeration literals

interface ZString<> very similar to Univ_String, except that indexing starts at 0 rather than 1

interface Interval<Bound_Type is Countable<>> intervals are constructed using the "..", "..<"
"<, ." and "<..<" operators with a low and high bound specified by values of the Bound_Type

interface Integer <Range : Interval<Univ_Integer>:= Default_Range> implements Countable<>,
Imageable<>; provides the usual operators

56

interface Float<Digits : Univ_Integer := Default_Digits> implements Hashable<>, Imageable<>;
provides the usual operators

interface Array<Element_Type is Assignable<>; Indexed_By is Countable<>> a fixed-size ar-
ray of Element_Type, indexed by a specified countable type

interface Set <Element_Type is Hashable<>> a set of Element_Type

interface Map <Key_Type is Hashable<>; Element_Type is Assignable<>> amap from Key_Type
to Element_Type

Consult "1ib/aaa.psi" for further details on the ParaSail Standard Library.

57

Chapter 12

Appendix: Using the ParaSail
Interpreter and Virtual Machine

The ParaSail interpreter and virtual machine is invoked with the following command:

% psli [-debug on] [-servers nnn] [-listing on/off] filel.psl file2.psl ...
[-command func argl arg2 ...]

The psli command invokes the interpreter on the specified ParaSail source files. If ~command is specified,
then after translating the ParaSail source to ParaSail Virtual Machine (PSVM) instructions, it executes the
specified ParaSail func with the given arguments, if any. If ~command is not specified, a prompt is presented
once processing is successful, allowing the user to enter a command to the virtual machine in the form
"func argl arg2 ...".

At the interactive prompt, the quit command may be used to exit the virtual machine. The "debug on"
command may be used to turn on virtual machine debugging. The "debug off" command may be used
to turn it back off. The "servers <number>" command may be used to specify the total number of server
threads to use for work stealing, henceforth.

The number of servers can also be specified on the command line via "-servers <number>". The
default is six. That is, there is effectively an implicit "-servers 6" on the command line if no explicit
"-servers nnn" is specified. At the interactive prompt, "servers nnn" is only effective to increase the
number of servers, because once a server is activated there is no mechanism to deactivate it.

To simplify the use of the interpreter, we have provided a c-shell script which has fewer options, but which
also automatically incorporates the new interactive ParaSail debugger console (1ib/debugger_console.psl),
which will be invoked if an assertion or pre/postcondition fails during execution:

% ../bin/interp.csh filel.psl file2.psl ... [-command func argl arg2 ...]

If you do not use interp.csh, but instead use psli directly, the first source file to be interpreted should
always be the ParaSail standard library, with name "../1ib/aaa.psi". This file contains the definitions
for the standard modules such as Univ_Integer, Set, Vector, etc. When using interp.csh, this file, along
with the ParaSail debugger sources, are included automatically.

If the ParaSail interpreter detects an error during parsing, semantic analysis, or PSVM code generation,
it gives error messages on the standard error output stream, as well as creating a file "errors.err," which
may be viewed using the "vim" text editor giving it the "-q" flag. When "errors.err" is viewed using
"vim -q", it will automatically position the text window at the line in a source file with a compilation error.
The vim commands :cn and :cp may be used to go to the next and the previous error.

In addition to producing error messages, the ParaSail interpreter also produces listing files, with names of
the form "filel.psl.1st". These include a line-numbered listing of the source file, an unparsing of each top-
level compilation unit, and the ParaSail Virtual Machine instructions generated for each operation. These

58

listing files are produced whether or not an error is detected. The ParaSail Virtual Machine instructions are
only produced if the ParaSail compiler’s semantic analysis of the source code succeeds. By default, a listing
is not produced when there is a "-command" specified. This default can be overridden with the ”-listing
on/off” option on the psli’’ command line. Giving \verb’-listing off”’ will turn off listings in all cases.
Giving "-listing on" will produce a listing in any case. When using the interp.csh script, you will need
to give the -w flag to have a listing produced (see interp.csh -h for a full list of flags for this script).

Note that the error recovery of this ParaSail interpreter is not perfect, so it may be necessary to fix the
first few errors and then rerun psli or interp.csh to avoid being mislead by cascading errors.

12.1 ParaSail Interactive Debugger

There is now an interactive debugger which is loaded automatically if you use the interp.csh script to
run the ParaSail interpreter. The interactive debugger is invoked whenever the interpreter encounters an
assertion or a pre/postcondition that fails at run-time. It is also invoked when the interpreter hits some
other sort of run-time failure.

The debugger console is itself written in ParaSail, and is in 1ib/debugger_console.psl. Feel free to
take a look at how it works. When it is invoked, giving the command help (or h) will list the available
commands:

>> Debugger command: help

Debugger commands available:
quit|qlexit : terminate the program and exit
continuel|c|conlcont : continue execution
uplu : go to next outer stack frame, if any
down|d : go to next inner stack frame, if any
list|l [+[-1<1line>] : list lines from source file
params|par : print values of parameter for current frame
locals|loc : print value of locals of current frame
help|h : show this message

The up and down commands walk up and down the stack of whatever is the current server thread running
at the time of the failure. This can be confusing because in the presence of concurrent loops or calls on
locking or queuing operations of concurrent objects, the stack frame reached by up might not be the logically
immediately enclosing stack frame. It does illustrate how work stealing works, where a single (heavyweight)
server thread executes bits and pieces (pico-threads) of a given program. In a future release, we plan to
change up and down so they walk up and down the logical hierarchy of stack frames, and allow explicit
switching between different logical threads of control. An adventurous user might try experimenting with
lib/debugger_console.psl to see if they can enhance the debugger in this or some other way. Please send
us the results of your experiments!

12.2 ParaSail LLVM-based Compiler

There is now also a true compiler for ParaSail, written in ParaSail itself. It converts the PSVM instructions
into LLVM instructions, and then invokes the LLVM compiler/assembler (llc/clang) to produce object code.
The cshell-script which invokes the compiler is called ”bin/pslc.csh” and you can run it with no arguments
to learn how to invoke it. The first time you use it, you will need to compile the ParaSail standard library
(l1ib/aaa.psi) and the compiler itself. This is done with the command bin/pslc.csh -b3 where -b3
requests a full bootstrap of the compiler.

An important thing to know about the compiler is that a compiled program needs a main routine
in which to start execution. By convention, this needs to be called main and have one parameter of type

59

Basic_Array<Univ_String>. The compiler can automatically generate such a routine, if you have an existing
routine with a different name. The compiler generates a simple wrapper routine called main which calls the
user-specified routine, if you give it the "-m <name>" command-line flag. Here is a description of some of
the command line switches of pslc.csh:

-0 <file_name> Set executable output file name
-0On Optimization level, where n is in O .. 3.
-C Compile only, do not link
If -c is *not* supplied, then -m *must* be supplied or
one of the files must contain a
func main(Basic_Array<Univ_String>)
-m <name> Specify the name of the main routine which must
be declared func <name>(Basic_Array<Univ_String>)

Run pslc.csh with no parameters to get the full list of command-line switches.

12.3 Example of using ParaSail Interpreter

Examples of using the ParaSail interpreter:

% interp.csh gsort.psl

ParaSail Interpreter and Virtual Machine Revision: 8.0
Copyright (C) 2011-2019, AdaCore, New York NY, USA
This program is provided "as is" with no warranty.

Parsing <install-dir>lib/aaa.psi
Parsing /<install-dir>/lib/reflection.psi
Parsing <install-dir>/reflection.psl
Parsing <install-dir>/psvm_debugging.psl
Parsing <install-dir>/lib/debugger_console.psl
Parsing gsort.psl
---- Beginning semantic analysis ----
Starting up thread servers

162 trees in library.
Done with First pass.
Done with Second pass.
Installing Debugging Console!
Done with Pre codegen pass.
Done with Code gen.
Filling in cur-inst-param info in op tables.
Evaluating global constants.
Finishing type descriptors.

Command to execute: Test_Sort 10
Before sort, Vec =

70, 43, 1, 92, 65, 26, 40, 98, 48, 67
After sort, Vec =

1, 26, 40, 43, 48, 65, 67, 70, 92, 98
After 2nd sort, Vec2 =

1, 26, 40, 43, 48, 65, 67, 70, 92, 98

Command to execute: quit

60

Shutting down thread servers

Stg_Rgn Statistics:

New allocations by owner: 3312 = b5}
Re-allocations by owner: 1892 = 31Y%
Total allocations by owner: 5204 = 87}
New allocations by non-owner: 317 = 5%
Re-allocations by non-owner: 440 = 7%
Total allocations by non-owner: 757 = 12}

Total allocations: 5961

Threading Statistics:

Num_Initial_Thread_Servers : 1 + 1
Num_Dynamically_Allocated_Thread_Servers : 4
Max_Waiting_Shared_Threads (on all servers’ queues): 1
Average waiting shared threads: 0.00
Max_Waiting_Unshared_Threads (on any one server’s queue): 1
Average waiting unshared threads: 0.00

Max_Active (threads): 6

Average active threads: 2.20

Max_Active_Masters : 6

Max_Subthreads_Per_Master : 3

Max_Waiting For_Subthreads : 3

Num_Thread_Steals : 570 out of 1 + 570 (U+S) thread initiations = 99

% interp.csh gsort.psl -command Test_Sort 10
Before sort, Vec =
70, 43, 1, 92, 65, 26, 40, 98, 48, 67
After sort, Vec =
1, 26, 40, 43, 48, 65, 67, 70, 92, 98
After 2nd sort, Vec2 =
1, 26, 40, 43, 48, 65, 67, 70, 92, 98

% interp.csh error_test.psl
Parsing <install-dir>/lib/aaa.psi

Parsing error_test.psl

error_test.psl:90:8: Error: Use ":=" rather than "=" in ParaSail
error_test.psl:92:8: Error: Use "!=" rather than "/=" in ParaSail
error_test.psl:94:7: Error: Use "elsif" rather than "elseif"
error_test.psl:94:11: Error: Use "==" rather than "=" in ParaSail
error_test.psl:239:17: Error: Use "==" rather than "=" in ParaSail

error_test.psl:263:42: Error: "for-each" iterator uses "of" rather than
error_test.psl:274:5: Error: Use "end if" rather than "endif"

% vim -q
[interactive correction of errors identified in errors.err]

61

llinll

