Submitted to SPLASH Onward! 2011

Designing ParaSail

A new language for race-free parallel programming

S. Tucker Taft

SofCheck, Inc.
Tucker. Taft@SofCheck.com

Abstract

ParaSail is a new parallel programming language whose de-
sign process over the past two years was documented by,
and intertwined with, a web log. This approach to language
design differs significantly from the more conventional pro-
cess involving a language design team, or a language design
committee. However, any language design process benefits
from a strong, explicit, consistent set of design principles
which guide the process and provide criteria to select among
the multitude of design choices. This paper identifies some
of the principles which drove the design of ParaSail, com-
pares them with principles either explicit or implicit in de-
signs of other languages, and attempts to evaluate how well
such principles served the corresponding language designs.

Categories and Subject Descriptors CR-number [subcat-
egory]: third-level

Keywords Programming Language Design, Parallel Pro-
gramming, Design Principles, Inherently Parallel, Compile-
Time Checking, Language Design Process, Weblog

1. Introduction

Designing a new programming language is always a daunt-
ing task. Designing a language that is intended to have broad
applicability, advance the state of the art, and be easy and
safe to use, makes the job even more challenging. To de-
sign ParaSail, a new language for race-free parallel pro-
gramming, the author chose to partake this effort out in the
open, in a publicly accessible weblog, but otherwise as a solo
effort[1].

Prior work by the author included over 30 years involve-
ment with the language design and standardization process,
including 5 years as technical lead of a full-time design team
developing the revision to the Ada language now known as

[Copyright notice will appear here once ’preprint’ option is removed.]

Designing ParaSail

Ada 95[5]. Other activities have involved more typical vol-
unteer language design committee approaches, where there
is no real command structure in the committee, requiring a
somewhat different process.

The committee approach to design, without strong lead-
ership, faces serious challenges in avoiding unpleasant com-
promises and feature inconsistencies. Perhaps the most fa-
mous quotation along these lines is that a camel looks like a
horse designed by committee. Certainly some programming
languages have acquired a few camel humps, if not in the
original design, then as the language evolved.

2. Blog-based Language Design Process

The solo, blog-based process of language design opens up
new opportunities, while creating its own set of challenges.
Clearly the command structure is very simple, but the ability
to validate ideas against other members of a team are clearly
limited. The authors lengthy experience with language de-
sign is presumably an advantage, but perhaps the biggest ad-
vantage is having a very strong set of principles for what
would make this new language most valuable to the soft-
ware development community. These principles include the
following:

¢ The language should be easy to read, and look familiar to
a broad swath of existing programmers, from the ranks
of programmers in the Algol/Pascal/Ada/Eiffel family,
to the programmers in the C/C++/Java/C# family, to the
programmers in the ML/Haskell and Lisp/Scheme com-
munities. Readability is to be emphasized over terseness,
and where symbols are used, they should be familiar from
existing languages, mathematics, or logic. Although ex-
tended character sets are more available these days, most
keyboards are still largely limited to the ASCII, or at best,
the Latin-1, character set, so the language should not de-
pend on the use of characters that are a chore to type.
Programs are often scanned backward, so ending indi-
cators should be as informative as starting indicators for
composite constructs. For example, “end loop” or “end
class Stack” rather than simply “end” or “}”.

e The language should have one primary way to do some-
thing rather than two or three nearly equivalent ones.

1 2011/4/16

Nonessential features should be eliminated, especially
those that are error prone or complicate the testing or
proof process. User-defined types and language-defined
types should use the same syntax and have the same ca-
pabilities.

e All code should be parameterized to some extent, since
all code being written in this day and age should be pa-
rameterized over the precision of the numeric types, the
character code of the strings involved, or the element
types of the data structures being defined. In other words,
all modules should be generic templates or equivalent.
But the semantics should be defined so that the parame-
terized modules can be fully compiled prior to being in-
stantiated.

e Parallelism should be built into the language to the ex-
tent that it is more natural to write parallel code than
to write explicitly sequential code, and that the resulting
programs can easily take advantage of as many cores as
are available on the host computer.

e The language should be inherently safe, in that the com-
piler should detect all potential race conditions, as well
as all potential runtime errors such as the use of unini-
tialized data, out of bounds indices, overflowing numeric
calculations, etc. Given the advances in static analysis,
there is no reason that the compiler cannot eliminate all
possible sources of run-time errors.

Perhaps much of this can be summed up in the words of
the language designer Jean Ichbiah, namely, that program-
ming is fundamentally a human activity [2]. Programming is
about human programmers clearly and correctly communi-
cating with at least two audiences: 1) other human program-
mers, both current and future, and 2) a very literally-minded
machine-based compiler or interpreter. What is needed is hu-
man engineering, which is the process of adapting a technol-
ogy to be most useful to humans, by minimizing opportuni-
ties for errors, taking advantage of commonly understood
principles, using terminology and symbols consistently and
in ways that are familiar, and eliminating unnecessary com-
plexity.

2.1 Some lower-level principles

Here are some additional somewhat lower level principles
followed during the ParaSail design:

e Conventional wisdom should not be accepted without
challenge. In particular, though passing functions and
types as parameters is clearly useful, it is arguable
whether full upward closures and types as first-class ob-
jects, are useful enough to justify the significant testing
and proof burdens associated with such constructs. The
more disciplined packaging of type and function pro-
vided by object-oriented programming can match essen-
tially all of the capability provided by upward closures
and types as first-class objects, while providing, through

Designing ParaSail

the Liskov Substitutability Principle[3] and other similar
principles, a more tractable testing and proof problem.

e Avoid constructs that require fine-grained asynchronous
garbage collection if possible. Garbage collectors are no-
toriously hard to test and prove formally, and are made
even more complex when real-time and multi-processor
requirements are added. Region-based storage manage-
ment, as in the Cyclone language[4], suggests a possible
alternative approach.

Mutual exclusion and waiting for a condition to be true

should be automatic as part of calling an operation
for which it is relevant. This is as opposed to explicit
lock/unlock, or explicit wait/signal. This simplifies pro-
gramming and eliminates numerous sources for errors in
parallel programs with inter-thread synchronization. The
result is also easier to understand and prove correct.

The design of ParaSail is now largely complete (after an
approximately 18 month process), and a prototype imple-
mentation is now usable. This paper will conclude with an
analysis of how well the design process worked, as related to
the above design principles, and as related to the blog-based
approach.

3. Programming Language History

It is interesting to catalog some of the mainstream, or at least
highly influential, third generation programming languages
designed over the past 45 years or so, and who were their
lead designers:

1956
1957
1958
1960
1964
1964
1964
1966
1967
1968
1970
1970
1972
1972
1973
1974
1975
1975
1975
1980
1983
1983
1983
1986
1986

Fortran -- John Backus

LISP -- John McCarthy

COBOL -- Grace Hopper et al

Algol 60 -- Bauer, Backus, Naur, et al

BASIC -- J.G. Kemeny and T.E. Kurtz

PL/I -- IBM & SHARE committee

APL -- Ken Iverson

Algol W -- Niklaus Wirth, C.A.R. Hoare

Simula 67 -- 0.J. Dahl, Kristen Nygaard, et al

Algol 68 -- C.A.R. Hoare, Edsger Dijkstra, et al

Pascal -- Niklaus Wirth
Smalltalk -- Alan Kay

Prolog -- Alin Colmerauer
C -- Dennis Ritchie
ML -- Robin Milner

CLU -- Barbara Liskov

Concurrent Pascal -- Per Brinch Hansen
Scheme -- Guy Steele and Gerald Sussman
Modula -- Niklaus Wirth

Ada 83 -- Jean Ichbiah (at INRIA)
Turbo Pascal -- Anders Hejlsberg
Occam -- David May (at INMOS)

C++ —-- Bjarne Stroustrup

Eiffel -- Bertrand Meyer

Oberon -- Niklaus Wirth

2011/4/16

1986 Modula-3 -- Luca Cardelli et al (at Dec SRC) one can find a casual phrase in a language reference manual

1986 Erlang -- Joe Armstrong (at Ericsson)
1990 Haskell -- S.P.Jones, P. Hudak, et al
1995 Java -- James Gosling

1995 Ada 95 -- Tucker Taft et al (at Intermetrics)

1995 Delphi -- Anders Hejlsberg
1996 0Caml -- Xavier Leroy

2001 C# -- Anders Hejlsberg

2003 Scala -- Martin Odersky
2005 Fortress -- Guy Steele et al

Although there have been exceptions, such as Algol 60
and 68, PL/I, Haskell, and Modula 3 (which were all de-
signed from the beginning by a tight-knit committee), by and
large these languages grew from the vision of one, or at most
two, chief architects, some of whom appear in the above list
several times with different languages, in different decades.
It is notable that the bulk of these languages originated (at
least in some form) more than 25 years ago, and all but the
last two more than ten years ago. Of course part of the rea-
son for the age of these languages is that it generally takes
several years for a language to reach “mainstream” status,
and once a language reaches such status, it is often an even
slower process for it to lose its status, and open up room for
some new upstart language. It is also interesting to see For-
tran and Fortress as bookends on this list of languages, both
languages largely focused on numerical calculation, while
the languages in between have wandered far afield from a
focus on numerics.

So counting distinct designers above, we would guess that
probably 95% of all 3rd-generation programming over the
past 45 years has been done in languages designed by a to-
tal of about 30 different people, and probably just ten peo-
ple, Backus, Hopper, Kemeny, Kurtz, Wirth, Ritchie, Steele,
Stroustrup, Gosling, and Hejlsberg, could be credited with
the lions share of that.

4. Language Design Philosophies

Formal evaluations of the comparative strengths of lan-
guages generally try to be objective, weighing expessive-
ness, readability, maintainability, efficiency, portability, etc.
However, given the very personal nature of most language
designs, it is not surprising that languages tend to develop
“followings” more than true rational justifications for their
use. Most languages are Turing complete within the capac-
ity of the execution environment, so expressiveness depends
less on the language per se than on the fluency of the pro-
grammer with the language.

So what ultimately makes a language design popular, in-
fluential, or well regarded? Our view is that it is all about the
integrity and consistency of the language design philosophy
held by the designer or design team. Some language design-
ers make it easy to identify their design philosophy, because
they address this issue explicitly, and make an effort to ex-
plain the choices they made. Others make it harder, but often

Designing ParaSail

that might capture their attitude.
Bjarne Stroustrup states in the second edition of The C++
Programming Language[6]:

The ["C with classes”] language was originally
invented because the author wanted to write some
event-driven simulations for which Simula67 would
have been ideal, except for efficiency considerations.
... C++ was designed primarily so that the author and
his friends would not have to program in assembler,
C, or various modern high-level languages. Its main
purpose is to make writing good programs easier and
more pleasant for the individual programmer. (pp. 4-
5)

Concerns for readability, maintainability, correctness, ro-
bustness, efficiency, etc., are all bundled here into the def-
inition of what makes a “good program.”

Bertrand Meyer gave hints of his design philosophy for
Eiffel in Object-Oriented Software Construction[7] and In-
troduction to the Theory of Programming Languages[8]. In
the preface to [7], Meyer states: “I designed [Eiffel] because
no existing language was up to my expectations.” He goes on
to say “Some of the chapters ... include a ‘discussion’ sec-
tion explaining the design issues encountered during the de-
sign of Eiffel, and how they were resolved. ... I often wished,
when reading descriptions of well-known programming lan-
guages, that the designers had told me not only what solu-
tions they chose, but why the chose them.”

Both Stroustrup and Meyer later wrote books specifically
about the design of their languages, and in there we can find
explicit explanations, or in some cases after-the-fact ratio-
nalizations, of choices made during the design. In The De-
sign and Evolution of C++[9] Stroustrup goes into great
depth on particular C++ language features. He begins chap-
ter 4 of this book with: “To be genuinely useful and pleasant
to work with, a programming language must be designed ac-
cording to an overall view that guides the design of its indi-
vidual language features.” But he then goes on to say: “I call
them rules because I find the term principles pretentious in a
field as poor in genuine scientific principles as programming
language design ... if a rule and practical experience are in
conflict, the rule gives way.” In general Stroustrup seems to
believe in the importance of having a set of rules, but also
seems to have relatively little faith in the ability to develop
a set of rules that can actually be applied consistently across
the language. Here are some of his rules:

e C++’s evolution must be driven by real problems.
® Don’t get involved in a sterile quest for perfection.
® C++ must be useful now.

e Don'’t try to force people.

Meyer in the preface to his book Eiffel: The Language[10],
emphasizes the importance of leaving things out of a design:

3 2011/4/16

Also notable is the set of ideas that have not been
retained. To design is to renounce.... In Eiffel, ... much
attention was devoted to keeping the language small
and trying to make it elegant...

The Modula-3 design team at DEC’s SRC documented
their underlying design philosophy. One of their key goals
was a language specification of no more than 50 pages[11].
This doesn’t say anything about maintainability, readability,
etc. of the programs, but it does address the value of a
small, internally consistent set of straightforward language
features. Greg Nelson, a member of the team, also wrote
a number of How Modula-3 Got Its Spots essays, which
provide insight into the decision process used to choose
particular rules for particular features[11][12].

In 1992, Barbara Liskov wrote an excellent descrip-
tion of the design process and principles behind the CLU
language[13], which she and her graduate students at MIT
designed in 1973. The identified principles were: 1. Keep fo-
cussed, 2. Minimality, 3. Simplicity, 4. Expressive power, 5.
Uniformity, 6. Safety, 7. Performance. That is a pretty good
list for almost any language.

The original Ada 83 reference manual[2] includes an in-
troduction which identifies three overriding concerns in the
design: “program reliability and maintenance, programming
as a human activity, and efficiency.” Because programming
is a human activity, human engineering is important to min-
imize error-prone constructs. The fundamental challenge is
that programmers make mistakes. From an engineering point
of view, the challenge is similar to that of a noisy commu-
nication channel, and the desire to identify any errors in the
transmission to avoid getting the wrong message. One chief
technique is to increase the hamming distance between legal
messages. That means that when some amount of noise is
added to a message, it is likely to be recognized as an ille-
gal message, rather than being interpreted as the wrong legal
message. A related technique is increasing the redundancy
in the message, where any noise is likely to appear as incon-
sistencies between the redundant parts of the message.

The Ada 95 language design team created an annotated
version of the Ada Reference Manual[14], and within certain
sections provided one or more paragraphs labeled Language
Design Principles, to document the principles underlying
the design of the features described in that section. For
example, in the section on “context clauses” (which identify
which other modules are to be imported by a given module
and whether the components of the module are to be made
directly visible), the following Language Design Principle
paragraph is provided:

The reader should be able to understand a con-
text_clause without looking ahead. Similarly, when
compiling a context_clause, the compiler should not
have to look ahead at subsequent context_items, nor
at the compilation unit to which the context_clause is
attached.

Designing ParaSail

By explicitly identifying these principles to users of the lan-
guage, the rules of the language can become more intuitive
to the programmer, and future evolution of the language is
more likely to remain consistent with the original design phi-
losophy.

An article by the author on the Ada 2005 language de-
sign process[15] emphasizes the importance of a shared de-
sign philosophy, with overarching concerns with “safety and
efficiency, with safety given more weight — though never ab-
solute precedence - when there was a conflict. ... [B]y appro-
priate human engineering, you can produce a language that
is in the end more productive.” This article concludes that
the presence of a strong, shared design philosophy within
the committee responsible for the Ada 2005 revision helped
the committee avoid the know pitfalls of committee design.

S. Enumeration Types and the Blog-Based
Design Process

One of the features of a blog-based language design process
is that it can be almost intentionally non-systematic, where
parts of the design that are clear can be described, while the
parts that are fuzzy can be ignored completely, or can merely
be identified as fuzzy and then left unresolved until some in-
spiration arrives. A committee-based or design-team-based
approach can rarely afford to just ignore some important part
of the language. In general a subcommittee will be assigned
to “solve the problem.”

As an example, deciding whether and how to provide
enumeration types has been a challenge for several object-
oriented languages. Wirth in his design for Pascal included
enumeration types, and most language designers since then
have included them. Interestingly, however, they were left
out of Wirth’s newer langauge Oberon in part because Wirth
did not consider them “extensible” enough, and the Java
designers also omitted them for apparently the same reason.
Ultimately they were added back to later versions of Java
(though not to more recent versions of Oberon).

Below is Wirth’s explanation for why he omitted enumer-
ation types. Based on experience using Java before enumer-
ation types were added back, this seems a very short-sighted
decision, because there is a fundamental and important dis-
tinction between an enumeration type and an integer type,
which is lost in Oberon and initial Java. In any case, here is
Wirth’s explanation[16]:

Enumeration types appear to be a simple enough
feature to be uncontroversial. However, they defy ex-
tensibility over module boundaries. Either a facility
to extend given enumeration types has to be intro-
duced, or they have to be dropped. A reason in favour
of the latter, radical solution was the observation that
in a growing number of programs the indiscriminate
use of enumerations (and subranges) had led to a type
explosion that contributed not to program clarity but
rather to verbosity. In connection with import and ex-

4 2011/4/16

port, enumerations give rise to the exceptional rule
that the import of a type identifier also causes the (au-
tomatic) import of all associated constant identifiers.
This exceptional rule defies conceptual simplicity and
causes unpleasant problems for the implementor.

Bertrand Meyer also chose to omit enumeration types
from Eiffel. Here is his explanation[7]:

Introducing Pascal-ilke enumeration types would
be a conceptual disaster in Eiffel: they would conflict
with the type system of the language, which is other-
wise simple (the four simple types on the one hand,
and the class types on the other). It does not seem
feasible to combine this notion elegantly with inheri-
tance.

In the design of ParaSail, though we knew that we wanted to
have enumeration types, we were struggling to find a way
to integrate a mechanism for defining enumeration types
with the general model that had been adopted for all other
type definitions, namely the instantiation of a module with
parameters. For example, to define an integral “Age” type in
ParaSail, one could write:

type Age is Integer<O0..200>;

To define a set of Ages, one could write:
type Age_Set is Set<Age>;

To define an array type of Ages indexed by Employee_ID,
one could write:

type Employee_Ages is Array
<Age, Indexed_By => Employee_ID>;

In each case, we define a type by instantiating a module
with particular parameters. The challenge with an enumera-
tion type is to identify the particular enumeration literals to
be associated with the type, while remaining with this gen-
eral principle that one defines a type by instantiating a mod-
ule.

Although we had high hopes for solving this problem, the
blog-based design approach gave us the license to simply
not worry about the problem until a solution presented itself.
Had we felt forced to systematically “solve the problem,”
we almost certainly would have resorted to some kind of
special syntax unique to the definition of enumeration types
to accommodate identifying the enumeration literals, giving
up on our uniform syntax for type definition.

While we temporarily ignored the problem with enumer-
ation types and the associated literals, we proceeded to work
out the details of integer, floating point, character, and string
literals, and how they could be associated with a particular
type. Our model was to associate a predefined “universal”
type with each kind of literal, and introduce a special set

Designing ParaSail

of “from_univ” conversion operators, one from each univer-
sal type, which if defined for a particular user-defined type,
allowed that user-defined type to make use of that kind of
literal. The precondition on the “from_univ”” operator deter-
mines what range of literals is acceptable, and the body of
the “from_univ” operator performs the actual conversion of
the literal to the user-defined type.

For example, to allow a particular type “My_Type” to use
integer literals in the interval -100 .. +100, one would define
a “from_univ” operator as:

operator "from_univ"
(Literal : Univ_Integer
{Literal in -100 +1003})
-> My_Type;

The above operator has one input parameter Literal of type
Univ_Integer restricted by a precondition to the interval -100
.. +100, and with an output of My _Type.

This model seemed to accomplish a goal of giving user-
defined types and language-defined types equal capability as
far as literals. Having described it in the blog and played with
it in various contexts, we moved on to other issues feeling
that the notion of user-defined literals was well in hand.

Approximately six months later, a satisfying solution for
the enumeration type with its enumeration literals emerged,
somewhat out of the blue. With a committee or design team,
this kind of delay for such a fundamental feature would
almost certainly be unacceptable. Of course, it is possible
that with more people focused on a particular problem, a
similarly satisfying solution would emerge, but it seems
a legitimate question whether one can simply “order up”
satisfying solutions for any given design challenge.

In any case, the solution for enumeration types that
emerged was to treat enumeration literals much as we were
treating numeric, character, and string literals. All of the
integer literals were of the single Univ_Integer type, and it
was the availability of a “from_univ”’ conversion operator
that determined whether a given user-defined type could be
used with integer literals. The idea was to create a recogniz-
able syntax for enumeration literals (distinct from that for
normal program identifiers), and associated them all with
a single Univ_Enumeration type, in the same way that in-
teger literals were all of the Univ_Integer type. If a user-
defined type was to be treated as an enumeration type, then
it would require a “from_univ”’ operator providing a conver-
sion from Univ_Enumeration, with a precondition indicating
which particular values of the Univ_Enumeration type were
acceptable as input to the conversion. For example, an enu-
meration type Color with three enumeration literals would
have the following “from_univ” operator:

operator "from_univ"

(Literal : Univ_Enumeration
{Literal in [#red | #green | #bluell})
-> Color;
5 2011/4/16

The above can be read as: the operator “from_univ” takes
an input parameter of type Univ_Enumeration and returns
an output of type Color, with the precondition that the input
parameter be in the set [#red | #green | #blue]. As illustrated,
the syntax for a literal of type Univ_Enumeration is a "#’
followed by an identifier. Clearly Univ_Enumeration has an
effectively infinite number of distinct literal values, much as
Univ_Integer has an infinite number of distinct literal integer
values.

So how does this help with our desire to make the defini-
tion of an enumeration type use the syntax of a module in-
stantiation? The answer is that we can define a module, per-
haps called Enum, which takes a vector of Univ_Enumeration
values, and internally defines a “from_univ” operator based
on that vector, with the set of literals in the vector providing
the precondition, and the order of the literals in the vector de-
termining the underlying representation as, for example, an
integer in the interval 0..num_literals-1. For example, if we
presume the existence of such an Enum module (and there
might be other modules for defining enumeration types with
alternative representation approaches), then we can define
an enumeration type Color via:

type Color is Enum<[#red, #green, #bluel]>;

This approach depends explicitly on being able to write
the relevant enumeration literals before defining the enumer-
ation type. This is now possible because all enumeration lit-
erals are of a predefined Univ_Enumeration type, and can be
used freely without ever declaring a user-defined enumera-
tion type.

This solution is particularly satisfying, because it uni-
fies enumeration type definition syntax with that of all other
types, it gives complete freedom in how to represent enu-
meration types internally, and it addresses one of Wirth’s
complaints from the above quotation by allowing an enu-
meration type to be imported without having to carry along
a large collection of other identifiers. The enumeration liter-
als already exist everywhere, rather than being carried along
with particular enumeration types.

6. Evaluating the Language Design Process

How does one evaluate the success of the design of a pro-
gramming language? One measure is to observe the amount
of literature devoted to helping programmers avoid problems
with the language. With C being one of the most widely used
languages applicable to many domains, it is not a great sur-
prise that a long list of human engineering issues has been
produced. Entire books have been devoted to the “pitfalls”
of C[17]. Examples such as the “=" vs. “==" confusion,
the missing “break” bug, operator precedence surprises, the
missing “”’ challenge, the forgotten function “return” state-
ment. Are such problems inevitable? C was certainly a big
step up from assembly language, the language in which most

Designing ParaSail

system software was written prior to the wide availability of
C.

Other languages have developed their own list of pitfalls.
For C++, in addition to the list inherited from C, there is
the notorious virtual vs. non-virtual destructor issue, the
dangling “const” syntax for qualifying the “this” parameter,
the type slicing which can happen when passing a class-type
object by value, the meaning of ”&” vs. “*” in declarator
syntax as opposed to call syntax.

As an example of the kinds of issues found in the Pascal
language, there is the ambiguity in the run-time semantics
of “and” and “or,” the confusion of semicolon-as-separator
vs. semicolon-as-terminator, and whether to repeat or not
the parameter declarations when a function has a forward
declaration.

Are these kinds of problems avoidable during the design
process? Does it help to have a strong, explicit design phi-
losophy that includes human engineering? C and C++ were
languages designed according to a relatively informal and
pragmatic set of rules. By contrast, CLU and Modula-3 were
designed with an explicit set of strong design principles.
Clearly using these languages as data points, the long term
popularity of a programming language is not determined by
the strength of its design principles. But popularity of tech-
nology is notoriously hard to predict based on inherent char-
acteristics. CLU and Modula-3 are widely regarded as hav-
ing clean, elegant, internally consistent designs. Let us hope
that does not always preclude commercial popularity.

7. Conclusion

Using a weblog to document and drive the design process
for the ParaSail programming language has been, we feel,
a successful experiment. What lessons can we draw from
this experience? Having an explicit, strong set of design
principles has been very important, even for this solo blog-
based effort.

But in contrast to a more systematic design-team-based
or committee-based process, the blog-based process has al-
lowed us to jump from one aspect of the language to an-
other, allowing the author to go through more of a discovery
process than an invention process. That is, rather than sys-
tematically tackling particular design problems and attempt-
ing to force a solution, problems were allowed to percolate
in the background while effort focused on parts of the lan-
guage where solutions were more immediately apparent. At
some point, as part of experimenting or ruminating, a solu-
tion for one of the background problems suddenly emerged,
as though it was always there but just was not yet visible.
This has allowed the author to stay very close to the origi-
nal design principles, rather than being forced into compro-
mises to satisfy a schedule or other external requirements for
steady progress.

We believe that this focus on very strong, explicit design
principles, and a willingness to allow solutions to emerge

6 2011/4/16

over time, rather than being forced into being, can help all
language design processes avoid some of the camel humps
of committee creations.

References

[1] S. Tucker Taft. The Design of ParaSail — Parallel Specifica-
tion and Implementation Language. Web log. http://parasail-
programming-language.blogspot.com September 2009.

[2] Honeywell-Bull. Ada Reference Manual. ANSI-MIL-STD
1815A, 1983.

[3] Barbara Liskov, Jeannette Wing. A behavioral notion of
subtyping, ACM Transactions on Programming Languages and
Systems (TOPLAS), Volume 16, Issue 6, November 1994.

[4] Dan Grossman et al. Region-Based Storage Management in
Cyclone. Programming Languages Design and Implementation

2002. Berlin, Germany. June 2002.

[5] Intermetrics, Inc. Ada Reference Manual. ISO/IEC
8652:1995(E).

[6] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley, 1991.

[7] Bertrand Meyer. Object-Oriented Software Construction.
Prentice-Hall, 1988.

[8] Bertrand Meyer. Introduction to the Theory of Programming
Languages. Prentice-Hall, 1990.

[9] Bjarne Stroustrup. The Design and Evolution of C++. Addison-
Wesley, 1994.

[10] Bertrand Meyer. Eiffel, The Language. Prentice Hall Europe,
1992.

[11] Greg Nelson. Systems Programming with Modula 3. Prentice
Hall, 1991.

[12] How Modula-3 Got Its Spots.
http://www.modula3.org/threads/, issues 1 and 2.

[13] Barbara Liskov. A History of CLU. MIT-LCS TR-561, 1992.

[14] Ada Rapporteur Group. Annotated Ada Reference Manual.
http://www.ada-auth.org/standards/95aarm/html/, 1995.

[15] S. Tucker Taft. The Ada 2005 Language Design Process.
CrossTalk Vol 19, No. 8, August 2006.

[16] Niklaus Wirth. From Modula to Oberon.

ftp://ftp.inf.ethz.ch/pub/software/Oberon/OberonV4/Docu/ModToOberon.ps.gz

1988.
[17] Andrew Koenig. C Traps and Pitfalls. Addison-Wesley, 1989.

Designing ParaSail

2011/4/16

